skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable tension for gesture animation
Variation in muscular tension has important expressive impacts on agent motion; however, it is difficult to tune simulations to achieve particular effects. With a focus on gesture animation, we introduce mass trackers, a lightweight approach that employs proportional derivative control to track point masses that define the position of each wrist. The restriction to point masses allows the derivation of response functions that support straightforward tuning of system behavior. Using the point mass as an end-effector for an inverse kinematics rig allows easy control of both loose and high tension arm motion. Examples illustrate the expressive variation that can be achieved with this tension modulation. Two perceptual studies confirm that these changes impact the overall level of tension perceived in the motion of a gesturing character and further explore the parameter space. Practical guidelines on tuning are discussed.  more » « less
Award ID(s):
2232066
PAR ID:
10437993
Author(s) / Creator(s):
Date Published:
Journal Name:
IVA '22: Proceedings of the 22nd ACM International Conference on Intelligent Virtual Agents
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in passive structural control systems have included devices that exploit nonlinear behavior. The explicit inclusion of nonlinearities allows these passive devices to be designed to have behavior and performance that varies with different load types and amplitudes. The variable inertial rotational mechanism (VIRM) is an example of a nonlinear passive control device and consists of a mechanism that converts linear motion into rotational motion and an attached flywheel that includes masses that can move radially inside the flywheel. The radial motion of the VIRM flywheel masses results in the flywheel moment of inertia continuously varying during the response of the device. Despite a potentially small physical mass, the VIRM can provide to a system large added mass effects that can vary greatly depending on the flywheel moment of inertia. The large and variable mass effects provided by the VIRM can significantly shift the natural frequency and reduce the response amplitude of an underlying structure. While the VIRM has been investigated numerically by a number of authors, the experimental study of these devices has been limited. Moreover, most of the studies have considered semi-active or active variable inertia flywheels. The investigation of passive VIRMs are rare. This study aims to address these gaps in knowledge and experimentally investigate the response modification and pseudo resonance frequency changes of an underlying structure produced by the VIRM considering different loading conditions. For this experimental investigation, a VIRM was designed and fabricated that utilizes a lead screw and a flywheel that contains masses connected to springs that can move radially in the flywheel. This VIRM was then attached to a single-degree-of-freedom structure and subjected to different excitation types using a shake table. With data from these experimental tests, the overall fundamental frequency and the response of the system was evaluated using the experimentally estimated system transfer functions. The results of this study shows that the inclusion of the VIRM reduces the response amplitude and significantly shifted the pseudo resonance frequency of the underlying structure and that these shifts in pseudo resonance frequency are highly dependent on the loading amplitude. 
    more » « less
  2. Centrifugal pendulum vibration absorbers (CPVAs) are essentially collections of pendulums attached to a rotor or rotating component or components within a mechanical system for the purpose of mitigating the typical torsional surging that is inherent to internal combustion engines and electric motors. The dynamic stability and performance of CPVAs are highly dependent on the motion path defined for their pendulous masses. Assemblies of absorbers are tuned by adjusting these paths such that the pendulums respond to problematic orders (multiples of average rotation speed) in a way that smooths the rotational accelerations arising from combustion or other nonuniform rotational acceleration events. For most motion paths, pendulum tuning indeed shifts as a function of the pendulum response amplitude. For a given motion path, the tuning shift that occurs as pendulum amplitude varies produces potentially undesirable dynamic instabilities. Large amplitude pendulum motion that mitigates a high percentage of torsional oscillation while avoiding instabilities brought on by tuning shift introduces complexity and hazards into CPVA design processes. Therefore, identifying pendulum paths whose tuning order does not shift as the pendulum amplitude varies, so-called tautochronic paths, may greatly simplify engineering design processes for generating high-performing CPVAs. To illustrate this new approach and results, a tautochronic cut-out shape producing constant period system motion is obtained for a simplified problem involving a mass sliding in the cut-out of a larger mass that is free to translate horizontally without friction in a constant gravitational field, where the translating base mass replaces the rotating rotor in the centrifugal field. 
    more » « less
  3. In the recent past the design of many aquatic robots has been inspired by the motion of fish. Actuated internal rotors or moving masses have been frequently used either for propulsion and or the control of such robots. However the effect of internal passive degrees of freedom or passive appendages on the motion of such robots is poorly understood. In this paper we present a minimal model that demonstrates the influence of passive degrees of freedom on an aquatic robot. The model is of a circular cylinder with a passive internal rotor, immersed in an inviscid fluid interacting with point vortices. We show through numerics that the motion of the cylinder containing a passive degree of freedom is significantly different than one without. These results show that the mechanical feedback via passive degrees of freedom could be a useful way to control the motion of aquatic robots. 
    more » « less
  4. Centrifugal pendulum vibration absorbers (CPVAs) are essentially collections of pendulums attached to a rotor or rotating component or components within a mechanical system for the purpose of mitigating the typical torsional surging that is inherent to internal combustion engines and electric motors. The dynamic stability and performance of CPVAs are highly dependent on the motion path defined for their pendulous masses. Assemblies of absorbers are tuned by adjusting these paths such that the pendulums respond to problematic orders (multiples of average rotation speed) in a way that smooths the rotational accelerations arising from combustion or other non-uniform rotational acceleration events. For most motion paths, pendulum tuning indeed shifts as a function of the pendulum response amplitude. For a given motion path, the tuning shift that occurs as pendulum amplitude varies produces potentially undesirable dynamic instabilities. Large amplitude pendulum motion that mitigates a high percentage of torsional oscillation while avoiding instabilities brought on by tuning shift introduces complexity and hazards into CPVA design processes. Therefore, identifying pendulum paths whose tuning order does not shift as the pendulum amplitude varies, so-called tautochronic paths, may greatly simplify engineering design processes for generating high-performing CPVAs. This paper expands on the work of Sabatini, in which a mathematical condition for tautochronicity is identified for a class of differential equations that includes those that arise in the modeling of the motion of a pendulum in a centrifugal field. The approach is based on a transformation from the physical coordinate to a standard Hamiltonian system. We show that transforming a nonlinear oscillator made tautochronic through path modification actually transforms the nonlinear oscillator into a simple harmonic oscillator. To illustrate the new approach and results, the technique is applied to the simplified problem of determining the cut-out shape that produces tautochronic motion for a mass sliding in the cut-out of a larger mass that is free to translate horizontally without friction. In the simplified problem, centrifugal acceleration is replaced by constant gravitational acceleration and rotation of the rotor inertia is replaced by the translation of the large base mass. 
    more » « less
  5. null (Ed.)
    A bstract Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale ( H ). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H . In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, $$ {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H $$ ϕ ⋅ 0 1 / 2 ≈ 60 H , to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength f NL ∼ $$ \mathcal{O} $$ O (0 . 01–10) for an extended range of scalar masses $$ \lesssim {\overset{\cdot }{\phi}}_0^{1/2} $$ ≲ ϕ ⋅ 0 1 / 2 , potentially as high as 10 15 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level , which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin. 
    more » « less