skip to main content


Title: JWST UNCOVER: discovery of z > 9 galaxy candidates behind the lensing cluster Abell 2744
ABSTRACT

We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.

 
more » « less
NSF-PAR ID:
10438119
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5486-5496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Over the past year, JWST has uncovered galaxies at record-breaking distances up to z ∼ 13. The JWST UNCOVER (ultra-deep NIRSpec and NIRcam observations before the epoch of reionization) program has obtained ultra-deep multiwavelength NIRCam imaging of the massive galaxy cluster A2744 over ∼45 arcmin2 down to ∼29.5 AB mag. Here, we present a robust ultraviolet (UV) luminosity function derived through lensing clusters at 9 < z < 12. Using comprehensive end-to-end simulations, we account for all lensing effects and systematic uncertainties in deriving both the amplification factors and the effective survey volume. Our results confirm the intriguing excess of UV-bright galaxies (MUV <−20 AB mag) previously reported at z > 9 in recent JWST studies. In particular, a double power-law (DPL) describes better the bright end of the luminosity function compared to the classical Schechter form. The number density of these bright galaxies is 10–100 times larger than theoretical predictions and previous findings based on Hubble Space Telescope (HST) observations. Additionally, we measure a star formation rate density of ρSFR = 10−2.64 M⊙ yr−1 Mpc−3 at these redshifts, which is 4–10 times higher than galaxy formation models that assume a constant star formation efficiency. Future wide-area surveys and accurate modelling of lensing-assisted observations will reliably constrain both the bright and the dim end of the UV luminosity function at z > 9, which will provide key benchmarks for galaxy formation models.

     
    more » « less
  2. ABSTRACT

    One of the main goals of the JWST is to study the first galaxies in the Universe. We present a systematic photometric analysis of very distant galaxies in the first JWST deep field towards the massive lensing cluster SMACS0723. As a result, we report the discovery of two galaxy candidates at z ∼ 16, only 250 million years after the big bang. We also identify two candidates at z ∼ 12 and six candidates at z ∼ 9−11. Our search extended out to z ≲ 21 by combining colour information across seven near-infrared camera and near-infrared imager and slitless spectrograph filters. By modelling the Spectral Energy Distributions (SEDs) with EAZY and BEAGLE, we test the robustness of the photometric redshift estimates. While their intrinsic (unlensed) luminosity is typical of the characteristic luminosity L* at z > 10, our high-redshift galaxies typically show small sizes and their morphologies are consistent with disks in some cases. The highest-redshift candidates have extremely blue ultraviolet-continuum slopes −3 < β < −2.4, young ages ∼10−100 Myr, and stellar masses around log (M⋆/M⊙) = 8.8 inferred from their spectral energy distribution modelling, which indicate a rapid build-up of their stellar mass. Our search clearly demonstrates the capabilities of JWST to uncover robust photometric candidates up to very high redshifts and peer into the formation epoch of the first galaxies.

     
    more » « less
  3. ABSTRACT

    Early photometric results from JWST have revealed a number of galaxy candidates above redshift 10. The initial estimates of inferred stellar masses and the associated cosmic star formation rates are above most theoretical model predictions up to a factor of 20 in the most extreme cases, while this has been moderated after the recalibration of NIRCam and subsequent spectroscopic detections. Using these recent JWST observations, we use galaxy scaling relations from cosmological simulations to model the star formation history to very high redshifts, back to a starting halo mass of 107 M⊙, to infer the intrinsic properties of the JWST galaxies. Here, we explore the contribution of supermassive black holes, stellar binaries, and an excess of massive stars to the overall luminosity of high-redshift galaxies. Despite the addition of alternative components to the spectral energy distribution, we find stellar masses equal to or slightly higher than previous stellar mass estimates. Most galaxy spectra are dominated by the stellar component, and the exact choice for the stellar population model does not appear to make a major difference. We find that four of the 12 high-redshift galaxy candidates are best fit with a non-negligible active galactic nuclei component, but the evidence from the continuum alone is insufficient to confirm their existence. Upcoming spectroscopic observations of z > 10 galaxies will confirm the presence and nature of high-energy sources in the early Universe and will constrain their exact redshifts.

     
    more » « less
  4. ABSTRACT

    The first deep-field observations of the JWST have immediately yielded a surprisingly large number of very high redshift candidates, pushing the frontier of observability well beyond z ≳ 10. We here present a detailed SED-fitting analysis of the 10 gravitationally lensed z ∼ 9–16 galaxy candidates detected behind the galaxy cluster SMACS J0723.3−7327 in a previous paper using the BEAGLE tool. Our analysis makes use of dynamical considerations to place limits on the ages of these galaxies and of all three published SL models of the cluster to account for lensing systematics. We find the majority of these galaxies to have relatively low stellar masses $M_{\star }\sim 10^7-10^8\, \mathrm{M}_{\odot }$ and young ages tage ∼ 10–100 Myr but with a few higher mass exceptions ($M_{\star }\sim 10^9\rm{-}10^{10}\, \mathrm{M}_{\odot }$) due to Balmer-break detections at z ∼ 9–10. Because of their very blue UV-slopes, down to β ∼ −3, all of the galaxies in our sample have extremely low dust attenuations AV ≲ 0.02. Placing the measured parameters into relation, we find a very shallow M⋆ − MUV-slope and high sSFRs above the main sequence of star formation with no significant redshift-evolution in either relation. This is in agreement with the bright UV luminosities measured for these objects and indicates that we are naturally selecting UV-bright galaxies that are undergoing intense star formation at the time they are observed. Finally, we discuss the robustness of our high-redshift galaxy sample regarding low-redshift interlopers and conclude that low-redshift solutions can safely be ruled out for roughly half of the sample, including the highest redshift galaxies at z ∼ 12–16. These objects represent compelling targets for spectroscopic follow-up observations with JWST and ALMA.

     
    more » « less
  5. ABSTRACT

    We present a new analysis of the rest-frame ultraviolet (UV) and optical spectra of a sample of three z > 8 galaxies discovered behind the gravitational lensing cluster RX J2129.4+0009. We combine these observations with z > 7.5 galaxies from the literature, for which similar measurements are available. As already pointed out in other studies, the high [O iii]λ5007/[O ii]λ3727 ratios (O32) and steep UV continuum slopes (β) are consistent with the values observed for low-redshift Lyman continuum emitters, suggesting that such galaxies contribute to the ionizing budget of the intergalactic medium. We construct a logistic regression model to estimate the probability of a galaxy being a Lyman continuum emitter based on the measured MUV, β, and O32. Using this probability and the UV luminosity function, we construct an empirical model that estimates the contribution of high-redshift galaxies to reionization. The preferred scenario in our analysis shows that at z ∼ 8, the average escape fraction of the galaxy population [i.e. including both LyC emitters (LCEs) and non-emitters] varies with MUV, with intermediate UV luminosity (−19 < MUV < −16) galaxies having larger escape fraction. Galaxies with faint UV luminosity (−16 < MUV < −13.5) contribute most of the ionizing photons. The relative contribution of faint versus bright galaxies depends on redshift, with the intermediate UV galaxies becoming more important over time. UV bright galaxies, although more likely to be LCEs at a given log(O32) and β, contribute the least of the total ionizing photon budget.

     
    more » « less