skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Behavioral Soft Constraints from Demonstrations
Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? These scenarios force us to evaluate the trade-off between collective norms and our own personal objectives. To create effective AI-human teams, we must equip AI agents with a model of how humans make trade-offs in complex, constrained environments. These agents will be able to mirror human behavior or to draw human attention to situations where decision making could be improved. To this end, we propose a novel inverse reinforcement learning (IRL) method for learning implicit hard and soft constraints from demonstrations, enabling agents to quickly adapt to new settings. In addition, learning soft constraints over states, actions, and state features allows agents to transfer this knowledge to new domains that share similar aspects.  more » « less
Award ID(s):
2007955
PAR ID:
10309918
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Workshop on Safe and Robust Control of Uncertain Systems at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? In general, how should we account for and balance the ethical values, safety recommendations, and societal norms, when we are trying to achieve a certain objective? To enable effective AI-human collaboration, we must equip AI agents with a model of how humans make such trade-offs in environments where there is not only a goal to be reached, but there are also ethical constraints to be considered and to possibly align with. These ethical constraints could be both deontological rules on actions that should not be performed, or also consequentialist policies that recommend avoiding reaching certain states of the world. Our purpose is to build AI agents that can mimic human behavior in these ethically constrained decision environments, with a long term research goal to use AI to help humans in making better moral judgments and actions. To this end, we propose a computational approach where competing objectives and ethical constraints are orchestrated through a method that leverages a cognitive model of human decision making, called multi-alternative decision field theory (MDFT). Using MDFT, we build an orchestrator, called MDFT-Orchestrator (MDFT-O), that is both general and flexible. We also show experimentally that MDFT-O both generates better decisions than using a heuristic that takes a weighted average of competing policies (WA-O), but also performs better in terms of mimicking human decisions as collected through Amazon Mechanical Turk (AMT). Our methodology is therefore able to faithfully model human decision in ethically constrained decision environments. 
    more » « less
  2. Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society. 
    more » « less
  3. null (Ed.)
    With the growing industry applications of Artificial Intelligence (AI) systems, pre-trained models and APIs have emerged and greatly lowered the barrier of building AI-powered products. However, novice AI application designers often struggle to recognize the inherent algorithmic trade-offs and evaluate model fairness before making informed design decisions. In this study, we examined the Objective Revision Evaluation System (ORES), a machine learning (ML) API in Wikipedia used by the community to build anti-vandalism tools. We designed an interactive visualization system to communicate model threshold trade-offs and fairness in ORES. We evaluated our system by conducting 10 in-depth interviews with potential ORES application designers. We found that our system helped application designers who have limited ML backgrounds learn about in-context ML knowledge, recognize inherent value trade-offs, and make design decisions that aligned with their goals. By demonstrating our system in a real-world domain, this paper presents a novel visualization approach to facilitate greater accessibility and human agency in AI application design. 
    more » « less
  4. In this extended abstract we present the design, development, and evaluation of a Minecraft-based simulated task environment to conduct human and AI teaming research. With the deluge of AI-driven applications and their infiltration into many activities of daily living, it is becoming necessary to look at ways that humans and AI can work together. There is a tremendous research burden associated with accurately evaluating the best practices and trade-offs when humans and AI have to collaborate together in completing critical tasks. Minecraft offers a low-cost alternative as an early investigating tool for researchers to build answers to emerging research questions before significantly investing in human-AI teaming activities in the real world. We demonstrate successfully via a simple rule-based AI, insights that could highly influence human-AI teaming activities can be derived to improve practical and viable development of protocols and procedures. Our findings indicate that simulated task environments play a critical role in furthering human AI teaming activities. 
    more » « less
  5. Abstract Constraining the actions of AI systems is one promising way to ensure that these systems behave in a way that is morally acceptable to humans. But constraints alone come with drawbacks as in many AI systems, they are not flexible. If these constraints are too rigid, they can preclude actions that are actually acceptable in certain, contextual situations. Humans, on the other hand, can often decide when a simple and seemingly inflexible rule should actually be overridden based on the context. In this paper, we empirically investigate the way humans make these contextual moral judgements, with the goal of building AI systems that understand when to follow and when to override constraints. We propose a novel and general preference-based graphical model that captures a modification of standarddual processtheories of moral judgment. We then detail the design, implementation, and results of a study of human participants who judge whether it is acceptable to break a well-established rule:no cutting in line. We then develop an instance of our model and compare its performance to that of standard machine learning approaches on the task of predicting the behavior of human participants in the study, showing that our preference-based approach more accurately captures the judgments of human decision-makers. It also provides a flexible method to model the relationship between variables for moral decision-making tasks that can be generalized to other settings. 
    more » « less