skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of an open forecasting challenge to assess skill of West Nile virus neuroinvasive disease prediction
Abstract Background West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. Methods We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. Results Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. Conclusions Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases). Graphical Abstract  more » « less
Award ID(s):
2011147
PAR ID:
10438183
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Parasites & Vectors
Volume:
16
Issue:
1
ISSN:
1756-3305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Larremore, Daniel B (Ed.)
    During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. 
    more » « less
  2. Abstract ObjectivesWest Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of outbreaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for routine WNV forecasting using public health surveillance data and meteorological observations. Materials and MethodsArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Google Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county-level predictions of WNV cases. ResultsArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for decision-makers, and has been tested and implemented in multiple public health institutions. Discussion and ConclusionRoutine prediction of mosquito-borne disease risk is feasible and can be implemented by public health departments using ArboMAP. 
    more » « less
  3. Ansari, Ali R. (Ed.)
    Null models provide a critical baseline for the evaluation of predictive disease models. Many studies consider only the grand mean null model (i.e. R 2 ) when evaluating the predictive ability of a model, which is insufficient to convey the predictive power of a model. We evaluated ten null models for human cases of West Nile virus (WNV), a zoonotic mosquito-borne disease introduced to the United States in 1999. The Negative Binomial, Historical (i.e. using previous cases to predict future cases) and Always Absent null models were the strongest overall, and the majority of null models significantly outperformed the grand mean. The length of the training timeseries increased the performance of most null models in US counties where WNV cases were frequent, but improvements were similar for most null models, so relative scores remained unchanged. We argue that a combination of null models is needed to evaluate the forecasting performance of predictive models for infectious diseases and the grand mean is the lowest bar. 
    more » « less
  4. Abstract Humans have greatly altered earth’s terrestrial water cycle with the majority of fresh water being used for agriculture. Irrigation changes spatial and temporal water availability and alters mosquito abundance and phenology. Previous studies evaluating the effect of irrigation on mosquito abundance and mosquito-borne disease have shown inconsistent results and little is known about the effect of irrigation on variability in mosquito abundance. We examined the effect of irrigation, climate and land cover on mosquito abundance and human West Nile virus (WNV) disease cases across California. Irrigation made up nearly a third of total water inputs, and exceeded precipitation in some regions. Abundance of two key vectors of several arboviruses, including WNV,Culex tarsalisand the Culex pipienscomplex, increased 17–21-fold with irrigation. Irrigation reduced seasonal variability inC. tarsalisabundance by 36.1%. Human WNV incidence increased with irrigation, which explained more than a third (34.2%) of the variation in WNV incidence among California counties. These results suggest that irrigation can increase and decouple mosquito populations from natural precipitation variability, resulting in sustained and increased disease burdens. Shifts in precipitation due to climate change are likely to result in increased irrigation in many arid regions which could increase mosquito populations and disease. 
    more » « less
  5. Abstract Mosquito‐borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito‐borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait‐based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing‐based approach to mapping temperature‐dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature‐dependent traits and field‐based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6–25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait‐based mechanistic models. This study represents one of the highest resolution validations of trait‐based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito‐borne disease risk. 
    more » « less