skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term survival and second malignant tumor prediction in pediatric, adolescent, and young adult cancer survivors using Random Survival Forests: a SEER analysis
Abstract Survival and second malignancy prediction models can aid clinical decision making. Most commonly, survival analysis studies are performed using traditional proportional hazards models, which require strong assumptions and can lead to biased estimates if violated. Therefore, this study aims to implement an alternative, machine learning (ML) model for survival analysis: Random Survival Forest (RSF). In this study, RSFs were built using the U.S. Surveillance Epidemiology and End Results to (1) predict 30-year survival in pediatric, adolescent, and young adult cancer survivors; and (2) predict risk and site of a second tumor within 30 years of the first tumor diagnosis in these age groups. The final RSF model for pediatric, adolescent, and young adult survival has an average Concordance index (C-index) of 92.9%, 94.2%, and 94.4% and average time-dependent area under the receiver operating characteristic curve (AUC) at 30-years since first diagnosis of 90.8%, 93.6%, 96.1% respectively. The final RSF model for pediatric, adolescent, and young adult second malignancy has an average C-index of 86.8%, 85.2%, and 88.6% and average time-dependent AUC at 30-years since first diagnosis of 76.5%, 88.1%, and 99.0% respectively. This study suggests the robustness and potential clinical value of ML models to alleviate physician burden by quickly identifying highest risk individuals.  more » « less
Award ID(s):
1918925
PAR ID:
10438258
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundMetastatic cancer remains one of the leading causes of cancer-related mortality worldwide. Yet, the prediction of survivability in this population remains limited by heterogeneous clinical presentations and high-dimensional molecular features. Advances in machine learning (ML) provide an opportunity to integrate diverse patient- and tumor-level factors into explainable predictive ML models. Leveraging large real-world datasets and modern ML techniques can enable improved risk stratification and precision oncology. ObjectiveThis study aimed to develop and interpret ML models for predicting overall survival in patients with metastatic cancer using the Memorial Sloan Kettering-Metastatic (MSK-MET) dataset and to identify key prognostic biomarkers through explainable artificial intelligence techniques. MethodsWe performed a retrospective analysis of the MSK-MET cohort, comprising 25,775 patients across 27 tumor types. After data cleaning and balancing, 20,338 patients were included. Overall survival was defined as deceased versus living at last follow-up. Five classifiers (extreme gradient boosting [XGBoost], logistic regression, random forest, decision tree, and naive Bayes) were trained using an 80/20 stratified split and optimized via grid search with 5-fold cross-validation. Model performance was assessed using accuracy, area under the curve (AUC), precision, recall, and F1-score. Model explainability was achieved using Shapley additive explanations (SHAP). Survival analyses included Kaplan-Meier estimates, Cox proportional hazards models, and an XGBoost-Cox model for time-to-event prediction. The positive predictive value and negative predictive value were calculated at the Youden index–optimal threshold. ResultsXGBoost achieved the highest performance (accuracy=0.74; AUC=0.82), outperforming other classifiers. In survival analyses, the XGBoost-Cox model with a concordance index (C-index) of 0.70 exceeded the traditional Cox model (C-index=0.66). SHAP analysis and Cox models consistently identified metastatic site count, tumor mutational burden, fraction of genome altered, and the presence of distant liver and bone metastases as among the strongest prognostic factors, a pattern that held at both the pan-cancer level and recurrently across cancer-specific models. At the cancer-specific level, performance varied; prostate cancer achieved the highest predictive accuracy (AUC=0.88), while pancreatic cancer was notably more challenging (AUC=0.68). Kaplan-Meier analyses demonstrated marked survival separation between patients with and without metastases (80-month survival: approximately 0.80 vs 0.30). At the Youden-optimal threshold, positive predictive value and negative predictive value were approximately 70% and 80%, respectively, supporting clinical use for risk stratification. ConclusionsExplainable ML models, particularly XGBoost combined with SHAP, can strongly predict survivability in metastatic cancers while highlighting clinically meaningful features. These findings support the use of ML-based tools for patient counseling, treatment planning, and integration into precision oncology workflows. Future work should include external validation on independent cohorts, integration with electronic health records via Fast Healthcare Interoperability Resources–based dashboards, and prospective clinician-in-the-loop evaluation to assess real-world use. 
    more » « less
  2. Yanwu, Xu (Ed.)
    Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients’ survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs’ morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer. 
    more » « less
  3. null (Ed.)
    Abstract Accurate prediction of suicide risk among children and adolescents within an actionable time frame is an important but challenging task. Very few studies have comprehensively considered the clinical risk factors available to produce quantifiable risk scores for estimation of short- and long-term suicide risk for pediatric population. In this paper, we built machine learning models for predicting suicidal behavior among children and adolescents based on their longitudinal clinical records, and determining short- and long-term risk factors. This retrospective study used deidentified structured electronic health records (EHR) from the Connecticut Children’s Medical Center covering the period from 1 October 2011 to 30 September 2016. Clinical records of 41,721 young patients (10–18 years old) were included for analysis. Candidate predictors included demographics, diagnosis, laboratory tests, and medications. Different prediction windows ranging from 0 to 365 days were adopted. For each prediction window, candidate predictors were first screened by univariate statistical tests, and then a predictive model was built via a sequential forward feature selection procedure. We grouped the selected predictors and estimated their contributions to risk prediction at different prediction window lengths. The developed predictive models predicted suicidal behavior across all prediction windows with AUCs varying from 0.81 to 0.86. For all prediction windows, the models detected 53–62% of suicide-positive subjects with 90% specificity. The models performed better with shorter prediction windows and predictor importance varied across prediction windows, illustrating short- and long-term risks. Our findings demonstrated that routinely collected EHRs can be used to create accurate predictive models for suicide risk among children and adolescents. 
    more » « less
  4. Abstract Cancer is an umbrella term that includes a wide spectrum of disease severity, from those that are malignant, metastatic, and aggressive to benign lesions with very low potential for progression or death. The ability to prognosticate patient outcomes would facilitate management of various malignancies: patients whose cancer is likely to advance quickly would receive necessary treatment that is commensurate with the predicted biology of the disease. Former prognostic models based on clinical variables (age, gender, cancer stage, tumor grade, etc.), though helpful, cannot account for genetic differences, molecular etiology, tumor heterogeneity, and important host biological mechanisms. Therefore, recent prognostic models have shifted toward the integration of complementary information available in both molecular data and clinical variables to better predict patient outcomes: vital status (overall survival), metastasis (metastasis-free survival), and recurrence (progression-free survival). In this article, we review 20 survival prediction approaches that integrate multi-omics and clinical data to predict patient outcomes. We discuss their strategies for modeling survival time (continuous and discrete), the incorporation of molecular measurements and clinical variables into risk models (clinical and multi-omics data), how to cope with censored patient records, the effectiveness of data integration techniques, prediction methodologies, model validation, and assessment metrics. The goal is to inform life scientists of available resources, and to provide a complete review of important building blocks in survival prediction. At the same time, we thoroughly describe the pros and cons of each methodology, and discuss in depth the outstanding challenges that need to be addressed in future method development. 
    more » « less
  5. Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance. 
    more » « less