skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Material Anchors for Young Children’s Spatial Planning: Contextualizing Path-Program Relationships
Planning a path from an origin to a destination is a common task for studying children’s spatial thinking and a foundational part of many early programming environments. This paper examines children’s means of abstraction between the grid space and the program domain through an exploration of the strategies they used to plan a robot’s routes in 2-D space. Qualitative analysis focused on ways children used materials to aid in spatial planning and programming, advancing previous work on material anchors for concepts (Hutchins, 2005). Through an elaboration of several path planning strategies, we illustrate how children varied in their use of materials in space to represent a path-program relationship. We argue that these strategies represent multiple ways of contextualizing and abstracting in a programming task, with implications for design of equitable CT assessments in early childhood.  more » « less
Award ID(s):
1842116
PAR ID:
10438350
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference of the Learning Sciences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As researchers who rely on federal funding and community participation, we have an obligation to return scientific knowledge to the community. Our outreach goals are to share information about language development and sensory impairments, introduce language science to future scientists, distribute scientific results accessibly, and illuminate the breadth of what science and scientists look like. We seek to achieve this in two ways: by sharing about language science beyond the ivory tower through short videos on social media and easy-to-read articles on our blog, and through educational outreach. For the latter, in recent efforts we designed and implemented after-school programming for young public schoolchildren, targeting early negative attitudes about STEM abilities. We presented profiles of underrepresented scientists in a range of fields, including language science, and discussed language modalities using observation games to help children appreciate science as a creative process of questions and failure – something they could do, not just “others” who do not look like them. We used the Draw-a-Scientist Task to assess our impact: children’s drawings were more representative after our program. In this article, we explore our missteps, difficulties, and successes. 
    more » « less
  2. Engineering in early education provides the foundation for the future of innovation. Reinforcing learning and engineering habits of mind (HoM) at an early age is crucial for expanding students’ higher order thinking, potential for lifelong learning, and sense of agency in their learning experiences. HoM is defined as a set of learned or internalized dispositions that inform an individual's behaviors when confronted with challenges. This study addressed two research questions: (1) Which HoM were articulated by children as they reflected upon their participation in a home-based engineering program? (2) What patterns of the children’s vocabulary align with the HoM framework? Observational methods were used to examine young children’s reflections upon the process of completing low-stakes engineering projects in their home. The participants were 23 children ranging from kindergarten to eighth grade. After they engaged in the ill-structured engineering tasks with family members at home, children joined an online show-and-tell meeting to show their prototype to others while answering various questions about their processes, frustrations, and successes. Findings revealed “Resourcefulness,” “Adapting/Improving,” and “Systems Thinking” as the most common HoM expressed by children through the show-and-tell meetings. Additional analysis also highlighted how children's articulation of learning and engineering habits of mind were logical (i.e., analytical), confident (i.e., clout), and impersonal. Moreover, children’s words were product oriented, predominantly focusing on the materials and tools utilized to create their prototype. The significance of this study highlights how engaging in hands-on engineering projects in the home has the potential to develop children’s dispositions and ways of thinking common to engineers. 
    more » « less
  3. Hoadley, C; Wang, X C (Ed.)
    Supporting children to make, explain, and reason through decisions about how to investigate scientific phenomena allows them to make sense of science content and practices in meaningful ways, positions children as agentic, and enables more equitable and just teaching. Novice teachers may use certain strategies and face unique challenges when engaging in this work. Drawing on written lesson plans, videorecords of lesson enactments, and interviews, this study explores five preservice teachers’ ideas and practices that positioned children as epistemic agents and identifies common tensions they negotiated. Each teacher demonstrated beliefs in children’s brilliance that were related to their practices, such as re-centering children’s ideas, working toward collective understanding, and engaging children in science practices. This study highlights early strengths of these five teachers and raises questions about teacher learning. 
    more » « less
  4. Purpose Much remains unknown about how young children orient to computational objects and how we as learning scientists can orient to young children as computational thinkers. While some research exists on how children learn programming, very little has been written about how they learn the technical skills needed to operate technologies or to fix breakdowns that occur in the code or the machine. The purpose of this study is to explore how children perform technical knowledge in tangible programming environments. Design/methodology/approach The current study examines the organization of young children’s technical knowledge in the context of a design-based study of Kindergarteners learning to code using robot coding toys, where groups of children collaboratively debugged programs. The authors conducted iterative rounds of qualitative coding of video recordings in kindergarten classrooms and interaction analysis of children using coding robots. Findings The authors found that as children repaired bugs at the level of the program and at the level of the physical apparatus, they were performing essential technical knowledge; the authors focus on how demonstrating technical knowledge was organized pedagogically and collectively achieved. Originality/value Drawing broadly from studies of the social organization of technical work in professional settings, we argue that technical knowledge is easy to overlook but essential for learning to repair programs. The authors suggest how tangible programming environments represent pedagogically important contexts for dis-embedding young children’s essential technical knowledge from the more abstract knowledge of programming. 
    more » « less
  5. Research on social, emotional, and academic development of children often notes the critical role of parents. Yet, how parents perceive and engage with children’s reactions to difficulty and perceived failure, to then shape their perspective and engagement with learning remains under investigated. The current study explored children and parents’ perceptions of and reactions to frustration and failure within an out-of-school, home-based engineering program. Specifically, we asked 1) How was failure perceived by participating families? and 2) What was the subsequent action/reaction to that failure? Data were derived from post-program interviews with children and parents who participated in a home-based, elementary engineering program involving take-home kits and self-identified engineering projects. Findings derived from descriptive qualitative methods and thematic analysis illustrated development of parent thinking around failure and frustration, both within themselves and their reactions to seeing such emotions in their children. Analysis further revealed how such emotions emerge within their children and impact their experiences. These findings shed light on ways child-parent engagement and the tactics employed by parents may influence a child’s perseverance and willingness to work through difficulty. This research represents an entry point for investigating how parents perceive and react to failures and challenges, and how these reactions shape their communication around failure with their children. Such parental reactions and communication may shape children’s mindset development, perspectives, and engagement. Implications for family engagement and influence on children’s learning through academic emotions in STEM and engineering are discussed. 
    more » « less