There have been increased calls for elementary teachers to integrate and connect knowledge across STEM disciplines. Along those lines, previous empirical research has identified known leverage points based on the disciplinary practices of representation and argumentation in math and science. Using the theoretical framework of resource theory, we analyzed data of pre-service teachers (PSTs) participation in open-ended performance assessments in math and science that asked them to utilize their subject matter knowledge and pedagogical content knowledge to address a realistic classroom challenge related to a hypothetical teaching scenario. Results show that the PSTs have a variety of productive knowledge resources related to generating and analyzing arguments and representations. We discuss the implications for elementary STEM teaching and teacher preparation.
more »
« less
Designing formative assessments of early childhood computational thinking
With growing interest in supporting the development of computational thinking (CT) in early childhood, there is also need for new assessments that serve multiple purposes and uses. In particular, there is a need to understand the design of formative assessments that can be used during classroom instruction to provide feedback to teachers and children in real-time. In this paper, we report on an empirical study and advance a new unit of observational analysis for formative assessment that we call an indicator of a knowledge refinement opportunity or as a shorthand , KRO indicators . We put forth a new framework for conceptualizing the design of formative assessments that builds on the Evidence Centered Design framework but centers identification and analysis of indicators of knowledge refinement opportunities. We illustrate a number of key indicators through empirical examples drawn from video recordings of Kindergarten classroom lessons.
more »
« less
- Award ID(s):
- 1842116
- PAR ID:
- 10438351
- Date Published:
- Journal Name:
- Early childhood research quarterly
- Volume:
- 65
- Issue:
- 4
- ISSN:
- 1873-7706
- Page Range / eLocation ID:
- 68-80
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contemporary views on what students should learn increasingly emphasize that students need to acquire more than a base of knowledge; they need to acquire the skills and abilities to use such knowledge in dynamic and flexible ways. To be most effective, learning environments need assessments that are aligned to these perspectives. Using a principled design framework can help guide assessment development toward such targets. Even when using a framework, however, thorny design challenges may arise. Technology-enhanced assessments offer opportunities to overcome such challenges but are not a solution in and of themselves and can also introduce new challenges. In this paper, we describe three challenges (conflict between multiple dimensions of science proficiency, authentic data, and grade-appropriate graphing tools) that we faced when designing for a specific Next Generation Science Standard, and the theoretical and design principles that guided us as we ideated design solutions. Through these designs we maintained alignment to our multidimensional assessment targets, a critical component of our larger assessment validity argument.more » « less
-
‘Algorithms’ is a core CS concept included in the K-12 CS standards, yet student challenges with understanding different aspects of algorithms are still not well documented, especially for younger students. This paper describes an approach to decompose the broad middle-school ‘algorithms’ standard into finer grained learning targets, develop formative assessment tasks aligned with the learning targets, and use the tasks to explore student understanding of, and challenges with, the various aspects of the standard. We present a number of student challenges revealed by our analysis of student responses to a set of standards-aligned formative assessment tasks and discuss how teachers and researchers interpreted student responses differently, even when using the same rubrics. Our study underscores the importance of carefully designed standards-aligned formative assessment tasks for monitoring student progress and demonstrates the need for teacher content knowledge to effectively use formative assessments during CS instruction.more » « less
-
null (Ed.)Unlike summative assessment that is aimed at grading students at the end of a unit or academic term, formative assessment is assess- ment for learning, aimed at monitoring ongoing student learning to provide feedback to both student and teacher, so that learning gaps can be addressed during the learning process. Education research points to formative assessment as a crucial vehicle for improving student learning. Formative assessment in K-12 CS and program- ming classrooms remains a crucial unaddressed need. Given that assessment for learning is closely tied to teacher pedagogical con- tent knowledge, formative assessment literacy needs to also be a topic of CS teacher PD. This position paper addresses the broad need to understand formative assessment and build a framework to understand the what, why, and how of formative assessment of introductory programming in K-12 CS. It shares specific pro- gramming examples to articulate the cycle of formative assessment, diagnostic evaluation, feedback, and action. The design of formative assessment items is informed by CS research on assessment design, albeit related largely to summative assessment and in CS1 contexts, and learning of programming, especially student misconceptions. It describes what teacher formative assessment literacy PD should entail and how to catalyze assessment-focused collaboration among K-12 CS teachers through assessment platforms and repositories.more » « less
-
Formative assessments can have positive effects on learning, but few exist for computing, even for basic skills such as program tracing. Instead, teachers often rely on overly broad test questions that lack the diagnostic granularity needed to measure early learning. We followed Kane's framework for assessment validity to design a formative assessment of JavaScript program tracing, developing "an argument for effectiveness for a specific use." This included: 1) a fine-grained scoring model to guide practice, 2) item design to test parts of our fine-grained model with low confound-caused variance, 3) a covering test design that samples from a space of items and covers the scoring model, and 4) a feasibility argument for effectiveness for formative use (can target and improve learning). We contribute a distillation of Kane's framework situated for computing education, and a novel application of Kane's framework to formative assessment of program tracing, focusing on scoring, generalization, and use. Our application also contributes a novel way of modeling possible conceptions of a programming language's semantics by modeling prevalent compositions of control flow and data flow graphs and the paths through them, a process for generating test items, and principles for minimizing item confounds.more » « less
An official website of the United States government

