skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wind Turning in the Planetary Boundary Layer in CMIP6 Models
Abstract A set of CMIP6 models is evaluated for the turning of the wind over the planetary boundary layer (PBL) and the corresponding cross-isobaric mass flux. The bulk Richardson number method is used to calculate the height of the PBL to allow for comparisons with a climatology of observed wind-turning angles documented by Lindvall and Svensson based on more than 800 stations in the Integrated Global Radiosonde Archive. Wind-turning angles are found to be underestimated in all models, with the GFDL CM4 model having the closest distribution to the observations. Large, negative cross-isobaric mass fluxes (flow toward higher pressure) are found over high-terrain areas and the North Atlantic storm-track region in all models and the ERA-Interim reanalysis. Bulk Richardson number–derived PBLs are particularly shallow in the Norwegian Earth System Model, medium atmosphere-medium ocean resolution (NorESM2-MM), likely caused by a change in the turbulence and cloud scheme as compared to the CESM2 model that uses the same atmospheric model, leading to small wind-turning angles and cross-isobaric mass fluxes. Using the 850-hPa level as the upper boundary broadens the wind-turning angle distribution and increases the amount of cross-isobaric mass flux for all models. This makes the models closer to the observations, although substantial differences are still present. The assumption of a constant geostrophic wind throughout the PBL possibly affects the calculated mass fluxes.  more » « less
Award ID(s):
1916689
PAR ID:
10438377
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
17
ISSN:
0894-8755
Page Range / eLocation ID:
p. 5729-5742
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades. 
    more » « less
  2. Abstract Subgrid-scale turbulence in numerical weather prediction models is typically handled by a PBL parameterization. These schemes attempt to represent turbulent mixing processes occurring below the resolvable scale of the model grid in the vertical direction, and they act upon temperature, moisture, and momentum within the boundary layer. This study varies the PBL mixing strength within 4-km WRF simulations of a 26–29 January 2015 snowstorm to assess the sensitivity of baroclinic cyclones to eddy diffusivity intensity. The bulk critical Richardson number for unstable regimes is varied between 0.0 and 0.25 within the YSU PBL scheme as a way of directly altering the depth and magnitude of subgrid-scale turbulent mixing. Results suggest that varying the bulk critical Richardson number is similar to selecting a different PBL parameterization. Differences in boundary layer moisture availability, arising from reduced entrainment of dry, free tropospheric air, lead to variations in the magnitude of latent heat release above the warm frontal region, producing stronger upper-tropospheric downstream ridging in simulations with less PBL mixing. The more amplified flow pattern impedes the northeastward propagation of the surface cyclone and results in a westward shift of precipitation. In addition, trajectory analysis indicates that ascending parcels in the less-mixing simulations condense more water vapor and terminate at a higher potential temperature level than do ascending parcels in the more-mixing simulations, suggesting stronger latent heat release when PBL mixing is reduced. These results suggest that spread within ensemble forecast systems may be improved by perturbing PBL mixing parameters that are not well constrained. 
    more » « less
  3. Improving the prediction of clouds in shallow-cumulus regimes via turbulence parameterization in the planetary boundary layer (PBL) will likely increase the global skill of global climate models (GCMs) because this cloud regime is common over tropical oceans where low-cloud fraction has a large impact on Earth's radiative budget. This study attempts to improve the prediction of PBL structure in tropical trade wind regimes in the Community Atmosphere Model (CAM) by updating its formulation of momentum flux in CLUBB (Cloud Layers Unified by Binormals), which currently does not by default allow for upgradient momentum fluxes. Hindcast CAM output from custom CLUBB configurations which permit countergradient momentum fluxes are compared to in situ observations from weather balloons collected during the ElUcidating the RolE of Cloud–Circulation Coupling in ClimAte and Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (EUREC4A/ATOMIC) field campaign in the tropical Atlantic in early 2020. Comparing a version with CAM–CLUBB with a prognostic treatment of momentum fluxes results in vertical profiles that better match large-eddy simulation results. Countergradient fluxes are frequently simulated between 950 and 850 hPa over the EUREC4A/ATOMIC period in CAM–CLUBB. Further modification to the planetary boundary layer (PBL) parameterization by implementing a more generalized calculation of the turbulent length scale reduces model bias and root mean squared error (RMSE) relative to sounding data when coupled with the prognostic momentum configuration. Benefits are also seen in the diurnal cycle, although more systematic model errors persist. A cursory budget analysis suggests the buoyant production of momentum fluxes, both above and below the jet maximum, significantly contributes to the frequency and depth of countergradient vertical momentum fluxes in the study region. This paper provides evidence that higher-order turbulence parameterizations may offer pathways for improving the simulation of trade wind regimes in global models, particularly when evaluated in a process study framework. 
    more » « less
  4. The higher‐order turbulence scheme, Cloud Layers Unified by Binormals (CLUBB), is known for effectively simulating the transition from cumulus to stratocumulus clouds within leading atmospheric climate models. This study investigates an underexplored aspect of CLUBB: its capacity to simulate near‐surface winds and the Planetary Boundary Layer (PBL), with a particular focus on its coupling with surface momentum flux. Using the GFDL atmospheric climate model (AM4), we examine two distinct coupling strategies, distinguished by their handling of surface momentum flux during the CLUBB's stability‐driven substepping performed at each atmospheric time step. The static coupling maintains a constant surface momentum flux, while the dynamic coupling adjusts the surface momentum flux at each CLUBB substep based on the CLUBB‐computed zonal and meridional wind speed tendencies. Our 30‐year present‐day climate simulations (1980–2010) show that static coupling overestimates 10‐m wind speeds compared to both control AM4 simulations and reanalysis, particularly over the Southern Ocean (SO) and other midlatitude ocean regions. Conversely, dynamic coupling corrects the static coupling 10‐m winds biases in the midlatitude regions, resulting in CLUBB simulations achieving there an excellent agreement with AM4 simulations. Furthermore, analysis of PBL vertical profiles over the SO reveals that dynamic coupling reduces downward momentum transport, consistent with the found wind‐speed reductions. Instead, near the tropics, dynamic coupling results in minimal changes in near‐surface wind speeds and associated turbulent momentum transport structure. Notably, the wind turning angle serves as a valuable qualitative metric for assessing the impact of changes in surface momentum flux representation on global circulation patterns. 
    more » « less
  5. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less