skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Camera trapping expands the view into global biodiversity and its change
Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility. In locations with CTs, we found they sampled a greater number of days (mean = 133 versus 57 days) and documented additional species (mean increase of 1% of expected mammals). For species with CT data, we found CTs provided novel documentation of their ranges (93% of mammals and 48% of birds). Countries with the largest boost in data coverage were in the historically underrepresented southern hemisphere. Although embargoes increase data providers' willingness to share data, they cause a lag in data availability. Our work shows that the continued collection and mobilization of CT data, especially when combined with data sharing that supports attribution and privacy, has the potential to offer a critical lens into biodiversity. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.  more » « less
Award ID(s):
1754656 2211768 2206783
PAR ID:
10438450
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
378
Issue:
1881
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationBiodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region. Main Types of Variable ContainedEcological, life‐history, morphological and geographical traits. Spatial Location and GrainNeotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions. Time Period and GrainIUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023. Major Taxa and Level of MeasurementClasses Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals). Software Format.csv; R. 
    more » « less
  2. BACKGROUND The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await. 
    more » « less
  3. Abstract As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions. 
    more » « less
  4. Summary Biodiversity knowledge gaps and biases persist across low-income tropical regions. Genetic data are essential for addressing these issues, supporting biodiversity research and conservation planning. To assess progress in wildlife genetic sampling within the Philippines, I evaluated the scope, representativeness, and growth of publicly available genetic data and research on endemic vertebrates from the 1990s through 2024. Results showed that 82.3% of the Philippines’ 769 endemic vertebrates have genetic data, although major disparities remain. Reptiles had the least complete coverage but exhibited the highest growth, with birds, mammals, and amphibians following in that order. Species confined to smaller biogeographic subregions, with narrow geographic ranges, or classified as threatened or lacking threat assessments were disproportionately underrepresented. Research output on reptiles increased markedly, while amphibian research lagged behind. Although the number of non-unique authors in wildlife genetics studies involving Philippine specimens has grown steeply, Filipino involvement remains low. These results highlight the uneven and non-random distribution of wildlife genetic knowledge within this global biodiversity hotspot. Moreover, the limited participation of Global South researchers underscores broader inequities in wildlife genomics. Closing these gaps and addressing biases creates a more equitable and representative genetic knowledge base and supports its integration into national conservation efforts aligned with global biodiversity commitments. 
    more » « less
  5. Abstract Following the failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Kunming–Montreal Global Biodiversity Framework (GBF) presents the opportunity to preserve nature's contributions to people (NCPs) for current and future generations by conserving biodiversity and averting extinctions. There is a need to safeguard the tree of life—the unique and shared evolutionary history of life on Earth—to maintain the benefits it bestows into the future. Two indicators have been adopted within the GBF to monitor progress toward safeguarding the tree of life: the phylogenetic diversity (PD) indicator and the evolutionarily distinct and globally endangered (EDGE) index. We applied both to the world's mammals, birds, and cycads to show their utility at the global and national scale. The PD indicator can be used to monitor the overall conservation status of large parts of the evolutionary tree of life, a measure of biodiversity's capacity to maintain NCPs for future generations. The EDGE index is used to monitor the performance of efforts to conserve the most distinctive species. The risk to PD of birds, cycads, and mammals increased, and mammals exhibited the greatest relative increase in threatened PD over time. These trends appeared robust to the choice of extinction risk weighting. EDGE species had predominantly worsening extinction risk. A greater proportion of EDGE mammals (12%) had increased extinction risk compared with threatened mammals in general (7%). By strengthening commitments to safeguarding the tree of life, biodiversity loss can be reduced and thus nature's capacity to provide benefits to humanity now and in the future can be preserved. 
    more » « less