skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indicators to monitor the status of the tree of life
Abstract Following the failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Kunming–Montreal Global Biodiversity Framework (GBF) presents the opportunity to preserve nature's contributions to people (NCPs) for current and future generations by conserving biodiversity and averting extinctions. There is a need to safeguard the tree of life—the unique and shared evolutionary history of life on Earth—to maintain the benefits it bestows into the future. Two indicators have been adopted within the GBF to monitor progress toward safeguarding the tree of life: the phylogenetic diversity (PD) indicator and the evolutionarily distinct and globally endangered (EDGE) index. We applied both to the world's mammals, birds, and cycads to show their utility at the global and national scale. The PD indicator can be used to monitor the overall conservation status of large parts of the evolutionary tree of life, a measure of biodiversity's capacity to maintain NCPs for future generations. The EDGE index is used to monitor the performance of efforts to conserve the most distinctive species. The risk to PD of birds, cycads, and mammals increased, and mammals exhibited the greatest relative increase in threatened PD over time. These trends appeared robust to the choice of extinction risk weighting. EDGE species had predominantly worsening extinction risk. A greater proportion of EDGE mammals (12%) had increased extinction risk compared with threatened mammals in general (7%). By strengthening commitments to safeguarding the tree of life, biodiversity loss can be reduced and thus nature's capacity to provide benefits to humanity now and in the future can be preserved.  more » « less
Award ID(s):
2345994
PAR ID:
10471571
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Society for Conservation Biology
Date Published:
Journal Name:
Conservation Biology
Volume:
e14138
ISSN:
0888-8892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Comprehensive assessments of species’ extinction risks have documented the extinction crisis 1 and underpinned strategies for reducing those risks 2 . Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction 3 . Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods 4–7 . Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs 6 . Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened—confirming a previous extrapolation 8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods—agriculture, logging, urban development and invasive species—although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles—including most species of crocodiles and turtles—require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles. 
    more » « less
  2. In addition to changes associated with climate and land use, parrots are threatened by hunting and capture for the pet trade, making them one of the most at risk orders of birds for which conservation action is especially important. Species richness is often used to identify high priority areas for conserving biodiversity. By definition, richness considers all species to be equally different from one another. However, ongoing research emphasizes the importance of incorporating ecological functions (functional diversity) or evolutionary relationships (phylogenetic diversity) to more fully understand patterns of biodiversity, because (1) areas of high species richness do not always represent areas of high functional or phylogenetic diversity, and (2) functional or phylogenetic diversity may better predict ecosystem function and evolutionary potential, which are essential for effective long–term conservation policy and management. We created a framework for identifying areas of high species richness, functional diversity, and phylogenetic diversity within the global distribution of parrots. We combined species richness, functional diversity, and phylogenetic diversity into an Integrated Biodiversity Index (IBI) to identify global biodiversity hotspots for parrots. We found important spatial mismatches between dimensions, demonstrating species richness is not always an effective proxy for other dimensions of parrot biodiversity. The IBI is an integrative and flexible index that can incorporate multiple dimensions of biodiversity, resulting in an intuitive and direct way of assessing comprehensive goals in conservation planning. 
    more » « less
  3. INTRODUCTION The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic] 
    more » « less
  4. • Drought-induced xylem embolism is a primary cause of plant mortality. Although ~70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. • We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. • Compared to other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than non-cycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. • Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits–particularly vessels–may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads. 
    more » « less
  5. Abstract Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts. 
    more » « less