skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular identity crisis: environmental DNA metabarcoding meets traditional taxonomy—assessing biodiversity and freshwater mussel populations (Unionidae) in Alabama
The use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present. Multispecies eDNA approaches may also be more challenging where freshwater mussel populations are most diverse due to ongoing and significant taxonomic restructuring that has been further complicated by molecular phylogenies using mitochondrial genes. For this study, we developed a microfluidic metabarcoding array that targets a wide range of species, from invertebrates to fishes, with an emphasis on detecting unionid mussels known to be present in the Sipsey River, Alabama. We compared mussel species diversity across six sites with well-studied mussel assemblages using eDNA surveys and traditional quadrat surveys in 2016. We examined how factors such as mussel population density, biomass and location in the river substrate impacted our ability to detect certain species; and investigated unexpected eDNA detections through phylogenetic analysis. Our eDNA results for fish and mussel species were broadly consistent with the data from traditional electrofishing and quadrat-based field surveys, although both community eDNA and conventional sampling detected species unique to that method. Our phylogenetic analysis agreed with other studies that treat Pleurobema decisum and P. chattanoogaense as synonymous species; however, they are still listed as unique species in molecular databases which complicates their identity in a metabarcoding assay. We also found that Fusconaia flava and F. cerina are indistinguishable from one another using a portion of the NADH dehydrogenase Subunit 1 (ND1) marker, which may warrant further investigation into whether or not they are synonymous. Our results show that many factors impacted our ability to detect and correctly identify Unionidae mussel species. Here we describe the obstacles we faced, including the murky phylogeny of Unionidae mussels and turbid river conditions, and our development of a potentially impactful freshwater mussel monitoring eDNA assay.  more » « less
Award ID(s):
1831512 1942707
PAR ID:
10438626
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e15127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less
  2. Microeukaryotes are a diverse and often overlooked group of microbes that are important in food webs and other ecological linkages. Little is known about microeukaryotes associated with aquatic invertebrates, although filter feeders such as mussels are likely to take in and potentially retain microeukaryotes in their gut while feeding. Microeukaryotes such as apicomplexans have been reported in marine mussel species, but no studies have examined the presence of these microorganisms in freshwater mussels or how they relate to mussel host species or environmental conditions. In this study, microbial community DNA was extracted from the gut tissue of over 300 freshwater mussels, representing 22 species collected from rivers in the southeastern USA. Microeukaryote DNA was detected using PCR amplification, followed by the sequencing of positive amplicons. Microeukaryotes were found in 167 individual mussels (53%) of those tested. Amplicons included dinoflagellates/algae that differed between mussel species and are likely food sources that were distinct from those found in water and sediment samples analyzed concurrently. A total of 5% of the positive amplicons were non-photosynthetic alveolates that could represent parasitic microeukaryotes. Understanding the distribution of microeukaryotes in the freshwater mussel gut microbiome could further our understanding of the ongoing decline of mussel populations. 
    more » « less
  3. null (Ed.)
    Biodiversity hotspots can serve as protected areas that aid in species conservation. Long-term monitoring of multiple taxonomic groups within biodiversity hotspots can offer insight into factors influencing their dynamics. Mussels (Bivalvia: Unionidae) and fish are highly diverse and imperiled groups of organisms with contrasting life histories that should influence their response to ecological factors associated with local and global change. Here we use historical and contemporary fish and mussel survey data to assess fish and mussel community changes over a 33 year period (1986–2019) and relationships between mussel abundance and their host fish abundance in Bogue Chitto Creek, a tributary of the Alabama River and a biodiversity hotspot. Mussel abundance declined by ~80% and community composition shifted, with eight species previously recorded not found in 2019, and a single individual of the endangered Pleurobema decisum. Fish abundances increased and life history strategies in the community appeared stable and there was no apparent relationship between mussel declines and abundance of host fish. Temporal variation in the proportion of life history traits composing mussel assemblages was also indicative of the disturbances specifically affecting the mussel community. However, changes and declines in mussel assemblages in Bogue Chitto Creek cannot be firmly attributed to any specific factor or events because of gaps in historical environmental and biological data. We believe that mobility differences contributed to differential responses of fish and mussel communities to stressors including habitat degradation, recent droughts and invasive species. Overall, our work indicates that monitoring biodiversity hotspots using hydrological measurements, standardized survey methods and monitoring invasive species abundance would better identify the effects of multiple and interactive stressors that impact disparate taxonomic groups in freshwater ecosystems. 
    more » « less
  4. Abstract The gut microbiome is influenced by host species and the environment, but how the environment influences the microbiome of animals introduced into a new ecosystem has rarely been investigated. Freshwater mussels are aquatic fauna, with some threatened or endangered species propagated in hatcheries and introduced into natural systems as part of conservation efforts. The effects of the environment on the freshwater mussel gut microbiome were assessed for two hatchery-propagated species (Lampsilis ovata, Lampsilis ornata) introduced into rivers within their natural range. Mussels were placed in rivers for 8 weeks, after which one subset was collected, another subset remained in that river, and a third subset was reciprocally transplanted to another river in the same river basin for a further 8 weeks. Gut microbiome composition and diversity were characterized for all mussels. After the initial 8 weeks, mussels showed increased gut bacterial species richness and distinct community composition compared to hatchery mussels, but gut microbiome diversity then decreased for mussels that remained in the same river for all 16 weeks. The gut bacterial community of mussels transplanted between rivers shifted to resemble that of mussels placed initially into the recipient river and that remained there for the whole study. All mussels showed high proportions of Firmicutes in their gut microbiome after 8 weeks, suggesting an essential role of this phylum in the gut of Lampsilis species. These findings show that the mussel gut microbiome shifts in response to new environments and provide insights into conservation strategies that involve species reintroductions. 
    more » « less
  5. ABSTRACT Niche partitioning promotes species coexistence. Yet, it remains unclear how phylogeny and morphology influence the trophic niches of closely related aquatic species with shared feeding modes. Freshwater mussels (Family: Unionidae) are a group of filter‐feeding bivalves that are ideal for investigating mechanisms of niche partitioning. Particle size selection and patterns of ingestion are controlled by gill latero‐frontal cirri density (CD) and the number of cilia per cirrus (CC). We investigated trophic assimilation and niche area using stable isotope signatures (𝛿13C and 𝛿15N) and gill morphology with scanning‐electron microscopy for a diverse mussel assemblage from the Sipsey River, Alabama, USA. We predicted that (1) trophic niches and gill morphology would differ within and among species across sites; (2) co‐occurring species would partition food resources; (3) greater phylogenetic distances among species would result in increased trophic dissimilarity; (4) more CC and higher CD would result in a narrower trophic niche area, or more constrained range of food items assimilated. We found that (1) species identity and site influenced gill morphology and stable isotope signatures but that the trophic niche area of a species was only affected by species identity; (2) the average proportion of niche area overlap between co‐occurring species was low across sites (0.04 to 0.18); (3) trophic dissimilarity among species increased with phylogenetic distance; (4) CD but not the number of CC negatively related to trophic niche area. Our results indicate that gill morphology and evolutionary history are likely key factors governing the trophic niches of mussels. In addition, intraspecific variation in gill morphology across sites may either reflect a phenotypic response to differences in local resource availability or suggest that other mechanisms shape particle selection. Examining the interplay among the trophic niche, phylogeny, and morphology among functionally similar species further informs our understanding of the mechanisms facilitating their coexistence. 
    more » « less