skip to main content


This content will become publicly available on August 4, 2024

Title: Open EDFA gain spectrum dataset and its applications in data-driven EDFA gain modeling

Optical networks satisfy high bandwidth and low latency requirements for telecommunication networks and data center interconnection. To improve network resource utilization, machine learning (ML) is used to accurately model optical amplifiers such as erbium-doped fiber amplifiers (EDFAs), which impact end-to-end system performance such as quality of transmission. However, a comprehensive measurement dataset is required for ML to accurately predict an EDFA’s wavelength-dependent gain. We present an open dataset consisting of 202,752 gain spectrum measurements collected from 16 commercial-grade reconfigurable optical add–drop multiplexer (ROADM) booster and pre-amplifier EDFAs under varying gain settings and diverse channel-loading configurations over 2,785 hours in total, with a total dataset size of 3.1 GB. With this EDFA dataset, we implemented component-level deep-neural-network-based EDFA models and use transfer learning (TL) to transfer the EDFA model among 16 ROADM EDFAs, which achieve less than 0.18/0.24 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target training set. We also showed that TL reduces the EDFA data collection requirements on a new gain setting or a different type of EDFA on the same ROADM.

 
more » « less
Award ID(s):
2029295 2211944 1827923
NSF-PAR ID:
10438668
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
15
Issue:
9
ISSN:
1943-0620; JOCNBB
Page Range / eLocation ID:
Article No. 588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We implement and test transfer learning-based gain models across 16 ROADM EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target EDFA dataset. 
    more » « less
  2. We implement and test transfer learning-based gain models across 16 ROADM EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target EDFA dataset. 
    more » « less
  3. Optical transmission systems with high spectral efficiency require accurate quality of transmission estimation for optical channel provisioning. However, the wavelength-dependent gain effects of erbium-doped fiber amplifiers (EDFAs) complicate precise optical channel power prediction and low-margin operation. In this work, we examine supervised machine learning methods using multiple artificial neural networks (ANNs) to build models for gain spectra prediction of optical transmission line EDFAs under different operating conditions. Channel-loading configurations and channel input power spectra are used as an a posteriori knowledge data feature for model training. In a hybrid learning approach, estimated gain spectra calculated by an analytical model are added as an a priori input data feature to further improve the EDFA ANN model performance in terms of prediction accuracy, training time, and quantity of training data. Using these methods, the root mean square error and maximum absolute error of the predicted channel output power can be as low as 0.144 dB and 1.6 dB, respectively.

     
    more » « less
  4. We present a novel ML framework for modeling the wavelength-dependent gain of multiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy transfer-learning even when operated across different amplifier types. ©2023 The Author(s) 
    more » « less
  5. null (Ed.)
    Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2 nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer. 
    more » « less