skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-Normalizing Neural Network, Enabling One Shot Transfer Learning for Modeling EDFA Wavelength Dependent Gain
We present a novel ML framework for modeling the wavelength-dependent gain of multiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy transfer-learning even when operated across different amplifier types. ©2023 The Author(s)  more » « less
Award ID(s):
2029295
PAR ID:
10457175
Author(s) / Creator(s):
Date Published:
Journal Name:
in Proc. European Conference on Optical Communication (ECOC’23) (to appear
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical networks satisfy high bandwidth and low latency requirements for telecommunication networks and data center interconnection. To improve network resource utilization, machine learning (ML) is used to accurately model optical amplifiers such as erbium-doped fiber amplifiers (EDFAs), which impact end-to-end system performance such as quality of transmission. However, a comprehensive measurement dataset is required for ML to accurately predict an EDFA’s wavelength-dependent gain. We present an open dataset consisting of 202,752 gain spectrum measurements collected from 16 commercial-grade reconfigurable optical add–drop multiplexer (ROADM) booster and pre-amplifier EDFAs under varying gain settings and diverse channel-loading configurations over 2,785 hours in total, with a total dataset size of 3.1 GB. With this EDFA dataset, we implemented component-level deep-neural-network-based EDFA models and use transfer learning (TL) to transfer the EDFA model among 16 ROADM EDFAs, which achieve less than 0.18/0.24 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target training set. We also showed that TL reduces the EDFA data collection requirements on a new gain setting or a different type of EDFA on the same ROADM. 
    more » « less
  2. We implement and test transfer learning-based gain models across 16 ROADM EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target EDFA dataset. 
    more » « less
  3. We implement and test transfer learning-based gain models across 16 ROADM EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target EDFA dataset. 
    more » « less
  4. Scalable methods for optical transmission performance prediction using machine learning (ML) are studied in metro reconfigurable optical add-drop multiplexer (ROADM) networks. A cascaded learning framework is introduced to encompass the use of cascaded component models for end-to-end (E2E) optical path prediction augmented with different combinations of E2E performance data and models. Additional E2E optical path data and models are used to reduce the prediction error accumulation in the cascade. Off-line training (pre-trained prior to deployment) and transfer learning are used for component-level erbium-doped fiber amplifier (EDFA) gain models to ensure scalability. Considering channel power prediction, we show that the data collection process of the pre-trained EDFA model can be reduced to only 5% of the original training set using transfer learning. We evaluate the proposed method under three different topologies with field deployed fibers and achieve a mean absolute error of 0.16 dB with a single (one-shot) E2E measurement on the deployed 6-span system with 12 EDFAs. 
    more » « less
  5. We implement a cascaded learning framework using component-level EDFA models for optical power spectrum prediction in multi-span networks, achieving a mean absolute error of 0.17 dB across 6 spans and 12 EDFAs with only one-shot measurement. 
    more » « less