skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Viper: Interactive Exploration of Large Satellite Data
Significant increase in high-resolution satellite data requires more productive analysis methods to benefit data scientists. Interactive exploration is essential to productivity since it keeps the user en- gaged by providing quick responses. This paper addresses the pro- gressive zonal statistics problem that given big satellite data, an aggregate function, and a set of query polygons, zonal statistics computes the aggregate function for each query polygon over raster data. Efficiently querying complex polygons, reading high resolu- tion pixels and process multiple polygons simultaneously are three main challenges. This work introduces Viper, an interactive explo- ration pipeline to overcome these challenges and achieve require- ments. Viper uses a raster-vector index to bootstrap the answer with an accurate result in a short time. Then, it progressively refines the answer using a priority processing algorithm to produce the final answer. Experiments on large-scale real data show that Viper can reach 90% accuracy or higher up-to two orders of magnitude faster than baseline algorithms.  more » « less
Award ID(s):
2046236
PAR ID:
10438960
Author(s) / Creator(s):
;
Date Published:
Journal Name:
the 18th International Symposium on Spatial and Temporal Data, SSTD 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent explosion in the number and size of spatio-temporal data sets from urban environments and social sensors creates new opportunities for data-driven approaches to understand and improve cities. Visual analytics systems like Urbane aim to empower domain experts to explore multiple data sets, at different time and space resolutions. Since these systems rely on computationally-intensive spatial aggregation queries that slice and summarize the data over different regions, an important challenge is how to attain interactivity. While traditional pre-aggregation approaches support interactive exploration, they are unsuitable in this setting because they do not support ad-hoc query constraints or polygons of arbitrary shapes. To address this limitation, we have recently proposed Raster Join, an approach that converts a spatial aggregation query into a set of drawing operations on a canvas and leverages the rendering pipeline of the graphics hardware (GPU). By doing so, Raster Join evaluates queries on the fly at interactive speeds on commodity laptops and desktops. In this demonstration, we showcase the efficiency of Raster Join by integrating it with Urbane and enabling interactivity. Demo visitors will interact with Urbane to filter and visualize several urban data sets over multiple resolutions. 
    more » « less
  2. Employing Differential Privacy (DP), the state-of-the-art privacy standard, to answer aggregate database queries poses new challenges for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? We propose to demonstrate DPXPlain, the first system for explaining group-by aggregate query answers with DP. DPXPlain allows users to compare values of two groups and receive a validity check, and further provides an explanation table with an interactive visualization, containing the approximately 'top-k' explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps. 
    more » « less
  3. Advancements in remote sensing technology allowed for collecting vast amounts of satellite and aerial imagery with up to 1 cm pixel resolutions, stored in raster format crucial for various research fields. However, processing this data poses challenges, including resolving data dependencies when location, resolution, and coordinate systems do not align and managing large datasets within memory constraints. This paper introduces RDPro, a novel Spark-based system that efficiently processes and analyzes large raster datasets. RDPro features a new data model tailored for data dependencies in a distributed, shared-nothing environment, complete with tools for loading and writing raster data. It also optimizes core raster operations within Spark, allowing users to integrate complex data science workflows. Comparative analysis shows RDPro outperforms existing systems by up to two orders of magnitude. 
    more » « less
  4. As new laws governing management of personal data are introduced, e.g., the European Union’s General Data Protection Regulation of 2016 and the California Consumer Privacy Act of 2018, compliance with data governance legislation is becoming an increasingly important aspect of data management. An important component of many data privacy laws is that they require companies to only use an individual’s data for a purpose the individual has explicitly consented to. Prior methods for enforcing consent for aggregate queries either use access control to eliminate data without consent from query evaluation or apply differential privacy algorithms to inject synthetic noise into the outcomes of queries (or input data) to ensure that the anonymity of non-consenting individuals is preserved with high probability. Both approaches return query results that differ from the ground truth results corresponding to the full input containing data from both consenting and non-consenting individuals. We present an alternative frame- work for group-by aggregate queries, tailored for applications, e.g., medicine, where even a small deviation from the correct answer to a query cannot be tolerated. Our approach uses provenance to determine, for each output tuple of a group-by aggregate query, which individual’s data was used to derive the result for this group. We then use statistical tests to determine how likely it is that the presence of data for a non-consenting individual will be revealed by such an output tuple. We filter out tuples for which this test fails, i.e., which are deemed likely to reveal non-consenting data. Thus, our approach always returns a subset of the ground truth query answers. Our experiments successfully return only 100% accurate results in instances where access control or differential privacy would have either returned less total or less accurate results. 
    more » « less
  5. This paper studies the spatial group-by query over complex polygons. Given a set of spatial points and a set of polygons, the spatial group-by query returns the number of points that lie within the boundaries of each polygon. Groups are selected from a set of non-overlapping complex polygons, typically in the order of thousands, while the input is a large-scale dataset that contains hundreds of millions or even billions of spatial points. This problem is challenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are described by very complex boundaries. We propose a highly-parallelized query processing framework to efficiently compute the spatial group-by query on highly skewed spatial data. We also propose an effective query optimizer that adaptively assigns the appropriate processing scheme based on the query polygons. Our experimental evaluation with real data and queries has shown significant superiority over all existing techniques. 
    more » « less