Abstract The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.
more »
« less
DESI Observations of the Andromeda Galaxy: Revealing the Immigration History of Our Nearest Neighbor
Abstract We present Dark Energy Spectroscopic Instrument (DESI) observations of the inner halo of M31, which reveal the kinematics of a recent merger—a galactic immigration event—in exquisite detail. Of the 11,416 sources studied in 3.75 hr of on-sky exposure time, 7438 are M31 sources with well-measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf, and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1–2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H] > − 0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to be log 10 M NFW ( < 125 kpc ) / M ⊙ = 11.80 − 0.10 + 0.12 . The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.
more »
« less
- Award ID(s):
- 2007065
- PAR ID:
- 10438981
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 944
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We obtained Keck/DEIMOS spectra of 556 individual red giant branch stars in four spectroscopic fields spanning 13−31 projected kpc along the northeast (NE) shelf of M31. We present the first detection of a complete wedge pattern in the space of projected M31-centric radial distance versus line-of-sight velocity for this feature, which includes the returning stream component of the shelf. This wedge pattern agrees with expectations of a tidal shell formed in a radial merger and provides strong evidence in favor of predictions of Giant Stellar Stream (GSS) formation models in which the NE shelf originates from the second orbital wrap of the tidal debris. The observed concentric wedge patterns of the NE, west (W), and southeast (SE) shelves corroborate this interpretation independently of the models. We do not detect a kinematical signature in the NE shelf region corresponding to an intact progenitor core, favoring GSS formation models in which the progenitor is completely disrupted. The shelf’s photometric metallicity ([Fe/H] phot ) distribution implies that it is dominated by tidal material, as opposed to the phase-mixed stellar halo or the disk. The metallicity distribution ([Fe/H] phot = −0.42 ± 0.01) also matches the GSS, and consequently the W and SE shelves, further supporting a direct physical association between the tidal features.more » « less
-
The stellar halos of galaxies, primarily formed through the accretion and merger of smaller objects, are an important tool for understanding the hierarchical mass assembly of galaxies. However, the inner regions of stellar halos in disk galaxies are predicted to have an in situ component that is expected to be prominent along the major axis. Kinematic information is crucial to disentangle the contribution of the in situ component from the accreted stellar halos. The low surface brightness of stellar halos makes it inaccessible with traditional integrated light spectroscopy. In this work, we used a novel technique to study the kinematics of the stellar halo of the edge-on galaxy NGC 4945. We couple new deep Multi Unit Spectroscopic Explorer spectroscopic observations with existingHubbleSpace Telescope imaging data to spectroscopically measure the line-of-sight (LOS) heliocentric velocity and velocity dispersion in two fields at a galactocentric distance of 12.2 kpc (outer disk field) and 34.6 kpc (stellar halo field) along the NGC 4945 major axis, by stacking individual spectra of red giant branch and asymptotic giant branch stars. We obtained a LOS velocity and dispersion of 673 ± 11 km s−1and 73 ± 14 km s−1, respectively, for the outer disk field. This is consistent with the mean HI velocity of the disk at that distance. For the halo field, we obtained a LOS velocity and dispersion of 519 ± 12 km s−1and 42 ± 22 km s−1. The halo fields’ velocity measurement is within ∼40 km s−1from the systemic LOS velocity of NGC 4945, which is 563 km s−1, suggesting that its stellar halo at 34.6 kpc along the major axis is counter-rotating and its origins are likely to be the result of accretion. This provides the first-ever kinematic measurement of the stellar halo of a Milky Way-mass galaxy outside the Local Group from its resolved stellar population. Thus, we have established a powerful technique for measuring the velocity field for the stellar halos of nearby galaxies.more » « less
-
Abstract We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution ( R ∼ 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [ α /Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [ α /Fe] for M31 halo stars, covering a range of 9–180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo ( R proj > 50 kpc) M31 stars with spectroscopic [Fe/H] and [ α /Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of −0.0084 ± 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [ α /Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 ± 0.0005) in [ α /Fe] as a function of projected radius. We also explore the distribution in [Fe/H]–[ α /Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.more » « less
-
We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within | X Gal |< 5 kpc, | Y Gal |< 3.5 kpc, | Z Gal |< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge–bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [ α /Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low- α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity–| Z | max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity–| Z | max diagram consistently with the mean orbital radius and V ϕ distributions. A clear metallicity gradient as a function of | Z | max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [ α /Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature.more » « less
An official website of the United States government

