Abstract We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope at z = 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( K 0 = 18 − 9 + 11 keV cm 2 ), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate M ̇ cool = 100 − 60 + 90 M ⊙ yr −1 . From optical spectroscopy and photometry around the [O ii ] emission line, we estimate that the BCG star formation rate is SFR [ O II ] = 1.7 − 0.6 + 1.0 M ⊙ yr −1 , roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power P cav = 3.2 − 1.3 + 2.1 × 10 44 erg s −1 , which is consistent with the X-ray cooling luminosity ( L cool = 1.9 − 0.5 + 0.2 × 10 44 erg s −1 within r cool = 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.
more »
« less
SPT-CL J2215−3537: A Massive Starburst at the Center of the Most Distant Relaxed Galaxy Cluster
Abstract We present the discovery of the most distant, dynamically relaxed cool core cluster, SPT-CL J2215−3537 (SPT2215), and its central brightest cluster galaxy (BCG) at z = 1.16. Using new X-ray observations, we demonstrate that SPT2215 harbors a strong cool core with a central cooling time of 200 Myr (at 10 kpc) and a maximal intracluster medium cooling rate of 1900 ± 400 M ⊙ yr −1 . This prodigious cooling may be responsible for fueling the extended, star-forming filaments observed in Hubble Space Telescope imaging. Based on new spectrophotometric data, we detect bright [O ii ] emission in the BCG, implying an unobscured star formation rate (SFR) of 320 − 140 + 230 M ⊙ yr −1 . The detection of a weak radio source (2.0 ± 0.8 mJy at 0.8 GHz) suggests ongoing feedback from an active galactic nucleus (AGN), though the implied jet power is less than half the cooling luminosity of the hot gas, consistent with cooling overpowering heating. The extreme cooling and SFR of SPT2215 are rare among known cool core clusters, and it is even more remarkable that we observe these at such high redshift, when most clusters are still dynamically disturbed. The high mass of this cluster, coupled with the fact that it is dynamically relaxed with a highly isolated BCG, suggests that it is an exceptionally rare system that must have formed very rapidly in the early universe. Combined with the high SFR, SPT2215 may be a high- z analog of the Phoenix cluster, potentially providing insight into the limits of AGN feedback and star formation in the most massive galaxies.
more »
« less
- PAR ID:
- 10439156
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 947
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P cav / L cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution Log - ( α + β z , σ 2 ) and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P cav / L cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts.more » « less
-
ABSTRACT Abell 407 (A407) is a unique galaxy cluster hosting a central compact group of nine galaxies (named as ‘Zwicky’s Nonet’; G1–G9 in this work) within a 30 kpc radius region. The cluster core also hosts a luminous radio active galactic nucleus (AGN), 4C 35.06 with helically twisted jets extending over 200 kpc. With a 44 ks Chandra observation of A407, we characterize the X-ray properties of its intracluster medium and central galaxies. The mean X-ray temperature of A407 is 2.7 keV and the M200 is $$1.9 \times 10^{14}\, {\mathrm{M}_{\odot }}$$. We suggest that A407 has a weak cool core at r < 60 kpc scales and at its very centre, <1–2 kpc radius, a small galaxy corona associated with the strong radio AGN. We also conclude that the AGN 4C 35.06 host galaxy is most likely G3. We suggest that the central group of galaxies is undergoing a ‘slow merge’ procedure. The range of the merging time-scale is 0.3 ∼ 2.3 Gyr and the stellar mass of the future brightest cluster galaxy (BCG) will be $$7.4\times 10^{11} \, \mathrm{M}_{\odot }$$. We find that the regions that overlap with the radio jets have higher temperature and metallicity. This is consistent with AGN feedback activity. The central entropy is higher than that for other clusters, which may be due to the AGN feedback and/or merging activity. With all these facts, we suggest that A407 is a unique and rare system in the local universe that could help us to understand the formation of a massive BCG.more » « less
-
Abstract We present the results of an analysis of Wide-field Infrared Survey Explorer (WISE) observations of the full 2500 deg 2 South Pole Telescope (SPT)-Sunyaev–Zel’dovich cluster sample. We describe a process for identifying active galactic nuclei (AGN) in brightest cluster galaxies (BCGs) based on WISE mid-IR color and redshift. Applying this technique to the BCGs of the SPT-SZ sample, we calculate the AGN-hosting BCG fraction, which is defined as the fraction of BCGs hosting bright central AGNs over all possible BCGs. Assuming an evolving single-burst stellar population model, we find statistically significant evidence (>99.9%) for a mid-IR excess at high redshift compared to low redshift, suggesting that the fraction of AGN-hosting BCGs increases with redshift over the range of 0 < z < 1.3. The best-fit redshift trend of the AGN-hosting BCG fraction has the form (1 + z ) 4.1±1.0 . These results are consistent with previous studies in galaxy clusters as well as as in field galaxies. One way to explain this result is that member galaxies at high redshift tend to have more cold gas. While BCGs in nearby galaxy clusters grow mostly by dry mergers with cluster members, leading to no increase in AGN activity, BCGs at high redshift could primarily merge with gas-rich satellites, providing fuel for feeding AGNs. If this observed increase in AGN activity is linked to gas-rich mergers rather than ICM cooling, we would expect to see an increase in scatter in the P cav versus L cool relation at z > 1. Last, this work confirms that the runaway cooling phase, as predicted by the classical cooling-flow model, in the Phoenix cluster is extremely rare and most BCGs have low (relative to Eddington) black hole accretion rates.more » « less
-
Abstract We present new, deep, narrow- and broadband Hubble Space Telescope observations of seven of the most star-forming brightest cluster galaxies (BCGs). Continuum-subtracted [O II ] maps reveal the detailed, complex structure of warm ( T ∼ 10 4 K) ionized gas filaments in these BCGs, allowing us to measure spatially resolved star formation rates (SFRs) of ∼60–600 M ⊙ yr −1 . We compare the SFRs in these systems and others from the literature to their intracluster medium cooling rates ( M ̇ cool ), measured from archival Chandra X-ray data, finding a best-fit relation of log ( SFR ) = ( 1.66 ± 0.17 ) log ( M ̇ cool ) + (−3.22 ± 0.38) with an intrinsic scatter of 0.39 ± 0.09 dex. This steeper-than-unity slope implies an increasingly efficient conversion of hot ( T ∼ 10 7 K) gas into young stars with increasing M ̇ cool , or conversely a gradual decrease in the effectiveness of AGN feedback in the strongest cool cores. We also seek to understand the physical extent of these multiphase filaments that we observe in cluster cores. We show, for the first time, that the average extent of the multiphase gas is always smaller than the radii at which the cooling time reaches 1 Gyr, the t cool / t ff profile flattens, and that X-ray cavities are observed. This implies a close connection between the multiphase filaments, the thermodynamics of the cooling core, and the dynamics of X-ray bubbles. Interestingly, we find a one-to-one correlation between the average extent of cool multiphase filaments and the radius at which the cooling time reaches 0.5 Gyr, which may be indicative of a universal condensation timescale in cluster cores.more » « less
An official website of the United States government

