Abstract We present Keck Cosmic Web Imager Lyαintegral field spectroscopy of the fields surrounding 14 damped Lyαabsorbers (DLAs) atz≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyαline flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyαflux of three known Lyα-emitting Hi-selected galaxies in our sample. In addition, we find two Lyαemitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyαemission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyαemitters, we conclude that Hi-selected galaxies associated with high-metallicity DLAs atz≈ 2 are dusty and therefore might feature low Lyαescape fractions. Our results indicate that complementary approaches—using Lyα, CO, Hα, and [Cii] 158μm emission—are necessary to identify the wide range of galaxy types associated withz≈ 2 DLAs.
more »
« less
On the Metallicities and Kinematics of the Circumgalactic Media of Damped Lyα Systems at z ∼ 2.5*
Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Ly α absorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 < z abs < 3.5, such that the secondary sightline probes absorption from Ly α and a large suite of metal-line transitions (including O i , C ii , C iv , Si ii , and Si iv ) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤ R ⊥ ≤ 284 kpc. Analysis of Ly α in the CGM sightlines shows an anticorrelation between R ⊥ and H i column density ( N HI ) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of C ii and Si ii with N > 10 13 cm −2 within 100 kpc of DLAs are larger by 2 σ than those measured in the CGM of Lyman break galaxies (C f ( N C II ) > 0.89 and C f ( N Si II ) = 0.75 − 0.17 + 0.12 ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections and N HI > 10 18.5 cm −2 show a significant degree of scatter (with metallicities/limits across the range − 2.06 ≲ log Z / Z ⊙ ≲ − 0.75 ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of C iv λ 1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2 σ ) correlated, suggesting that they trace the potential well of the host halo over R ⊥ ≲ 300 kpc scales. At the same time, velocity centroids for C iv λ 1548 differ in DLA versus CGM sightlines by >100 km s −1 for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥10 12 M ⊙ .
more »
« less
- PAR ID:
- 10439214
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report an active galactic nucleus (AGN) with an extremely high equivalent width (EW), EW Ly α +N V,rest ≳921 Å , in the rest frame, at z ∼ 2.24 in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX), as a representative case of the high-EW AGN population. The continuum level is a nondetection in the HETDEX spectrum; thus the measured EW is a lower limit. The source is detected with significant emission lines (>7 σ ) at Ly α + N v λ 1241, C iv λ 1549, and a moderate emission line (∼4 σ ) at He ii λ 1640 within the wavelength coverage of HETDEX (3500–5500 Å). The r -band magnitude is 24.57 from the Hyper Suprime-Cam-HETDEX joint survey with a detection limit of r = 25.12 at 5 σ . The Ly α emission line spans a clearly resolved region of ∼10″ (85 kpc) in diameter. The Ly α line profile is strongly double peaked. The spectral decomposed blue gas and red gas Ly α emission are separated by ∼1.″2 (10.1 kpc) with a line-of-sight velocity offset of ∼1100 km s −1 . This source is probably an obscured AGN with powerful winds.more » « less
-
Abstract We present a survey undertaken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the galaxies associated with a representative sample of 16 damped Lyαabsorbers (DLAs) atz ≈ 4.1–4.5, using the [Cii] 158μm ([Cii]) line. We detect seven [Cii]-emitting galaxies in the fields of five DLAs, all of which have absorption metallicity [M/H] > −1.5. We find that the detectability of these Hi-selected galaxies with ALMA is a strong function of DLA metallicity, with a detection rate of % for DLAs with [M/H] > −1.5 and 0+18% for DLAs with [M/H] < −1.5. The identified DLA galaxies have far-IR properties similar to those of typical star-forming galaxies atz ∼ 4, with estimated obscured star formation rates ranging from ≲6M⊙yr−1to 110M⊙yr−1. High-metallicity DLAs therefore provide an efficient way to identify and study samples of high-redshift, star-forming galaxies, without preselecting the galaxies by their emission properties. The agreement between the velocities of the metal absorption lines of the DLA and the [Cii] emission line of the DLA galaxy indicates that the metals within the DLA originated in the galaxy. With observed impact parameters between 14 and 59 kpc, this indicates that star-forming galaxies atz ∼ 4 have a substantial reservoir of dense, cold, neutral gas within their circumgalactic medium that has been enriched with metals from the galaxy.more » « less
-
Abstract The circumgalactic medium (CGM) plays a vital role in the formation and evolution of galaxies, acting as a lifeline between galaxies and the surrounding intergalactic medium. In this study, we leverage a unique sample of quasar pairs to investigate the properties of the CGM with absorption line tomography. We present a new sample of medium-resolution Keck/ESI, Magellan/MagE, and VLT/XSHOOTER spectra of 29 quasar pairs at redshift 2 < z < 3. We supplement the sample with additional spectra of 32 pairs from the literature, creating a catalog of 61 quasar pairs with angular separations between 1.″7 and 132.″9 and projected physical separations ( r ⊥ ) between 14 kpc and 887 kpc. We construct a catalog of 906 metal-line absorption doublets of C iv ( λλ 1548, 1550) with equivalent widths ranging from 6 m Å ≤ W r ,1550 ≤ 2053 m Å. The best-fit linear model to the log-space equivalent width frequency distribution ( log f ( W r ) = m log ( W r ) + b ) of the sample yields coefficients of m = −1.44 ± 0.16 and b = −0.43 ± 0.16. To constrain the projected extent of C iv , we calculate the transverse autocorrelation function. The flattening of the autocorrelation function at low r ⊥ provides a lower limit for the coherence length of the metal enriched CGM—on the order of 200 h −1 comoving kpc. This physical size constraint allows us to refine our understanding of the metals in the CGM, where the extent of C iv in the CGM depends on gas flows, feedback, timescale of metal injection and mixing, and the mass of the host galaxies.more » « less
-
Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR.more » « less
An official website of the United States government

