skip to main content


Title: Teachers’ Use of Resources for Equitable Integration of Computation in Science Classrooms
While computation is a crucial aspect of modern science, students rarely have opportunities to engage in such work. In this study, we designed a series of professional learning opportunities for 12 physics teachers to support their enactment of equitable computational pedagogies. We asked how and why teachers utilized two primary resources of the PLS when making decisions about computational pedagogies. We analyzed multiple data sources using lenses from a situative learning perspective to examine teachers’ critical pedagogical discourses. We discuss how teachers’ critical discourses shaped the way the resources were utilized when designing computational learning opportunities for their students and the implications for future equity-oriented computational professional learning opportunities for teachers.  more » « less
Award ID(s):
1741575
NSF-PAR ID:
10439270
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Chinn, C.; Tan, E.; Chan, C.; Kali, Y.
Date Published:
Journal Name:
International Society of the Learning Proceedings of the 16th International Conference of the Learning Sciences - ICLS 2022
Page Range / eLocation ID:
905-008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  2. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  3. N/A (Ed.)
    Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students. 
    more » « less
  4. With the urgent call for supporting science teachers to promote equity and justice through their daily work of teaching, there is a growing need for better understanding how science teachers come to engage in transformative teaching and learning that is equitably consequential. In this participatory design research project (Bang & Vossoughi, 2016), we created a professional learning context in which high school chemistry teachers engaged in a pedagogical imagining (Gutiérrez & Calabese Barton, 2015) by leveraging their teaching experiences, knowledge about students and communities, values, and concerns to create powerful learning contexts for Latinx and multilingual students from immigrant, low-income families. Drawing upon the perspective of learning as making and sharing of the world interwoven with making and sharing of selves (Warren et al, 2020), we analyzed teachers’ participations and discourses to examine teachers’ making and sharing that were equitably consequential. The findings illustrated three critical moments of teachers’ making and sharing where: (a) the teachers collectively developed shared pedagogical goals toward transformative learning while formulating agency, (b) the teachers and the researchers came to design a creative stoichiometry unit where students use chemistry to make their community better, and (c) the teachers came to be committed to being ‘intentional’ in their relational work to create a welcoming and safe learning environment using concrete pedagogical strategies. The analyses point out three design features of the professional learning context that were associated with the teachers’ consequential makings: (a) the use of a conceptual tool (i.e., ‘design principles’), (b) the power of “what if” discourses, and (c) creating a space for collective learning. Recommendations for designing professional learning context toward transformative teaching and learning are discussed. 
    more » « less
  5. Abstract

    We find ourselves at a time when the need for transformation in science education is aligning with opportunity. Significant science education resources, namely the Next Generation Science Standards (NGSS) and the Ambitious Science Teaching (AST) framework, need an intentional aim of centering social justice for minoritized communities and youth as well as practices to enact it. While NGSS and AST provide concrete guidelines to support deep learning, revisions are needed to explicitly promote social justice. In this study, we sought to understand how a commitment to social justice, operationalized through culturally sustaining pedagogy (Paris, Culturally sustaining pedagogies and our futures.The Educational Forum, 2021; 85, pp. 364–376), might shape the AST framework to promote more critical versions of teaching science for equity. Through a qualitative multi‐case study, we observed three preservice teacher teams engaged in planning, teaching, and debriefing a 6‐day summer camp in a rural community. Findings showed that teachers shaped the AST sets of practices in ways that sustained local culture and addressed equity aims: anchoring scientific study in phenomena important to community stakeholders; using legitimizing students' stories by both using them to plan the following lessons and as data for scientific argumentation; introducing local community members as scientific experts, ultimately supporting a new sense of pride and advocacy for their community; and supporting students in publicly communicating their developing scientific expertise to community stakeholders. In shaping the AST framework through culturally sustaining pedagogy, teachers made notable investments: developing local networks; learning about local geography, history, and culture; building relationships with students; adapting lessons to incorporate students' ideas; connecting with community stakeholders to build scientific collaborations; and preparing to share their work publicly with the community. Using these findings, we offer a justice‐centered ambitious science teaching (JuST) framework that can deliver the benefits of a framework of practices while also engaging in the necessarily more critical elements of equity work.

     
    more » « less