skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teachers’ Use of Resources for Equitable Integration of Computation in Science Classrooms
While computation is a crucial aspect of modern science, students rarely have opportunities to engage in such work. In this study, we designed a series of professional learning opportunities for 12 physics teachers to support their enactment of equitable computational pedagogies. We asked how and why teachers utilized two primary resources of the PLS when making decisions about computational pedagogies. We analyzed multiple data sources using lenses from a situative learning perspective to examine teachers’ critical pedagogical discourses. We discuss how teachers’ critical discourses shaped the way the resources were utilized when designing computational learning opportunities for their students and the implications for future equity-oriented computational professional learning opportunities for teachers.  more » « less
Award ID(s):
1741575
PAR ID:
10439270
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Chinn, C.; Tan, E.; Chan, C.; Kali, Y.
Date Published:
Journal Name:
International Society of the Learning Proceedings of the 16th International Conference of the Learning Sciences - ICLS 2022
Page Range / eLocation ID:
905-008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational thinking CT is central to computer science, yet there is a gap in the literature on the best ways to implement CT in early childhood classrooms. The purpose of this qualitative study was to explore how early childhood teachers enacted asset-based pedagogies while implementing CT in their classrooms. We followed a group of 28 early childhood educators who began with a summer institute and then participated in multiple professional learning activities over one year. Examining a subset of the larger group, findings illustrate how teachers intentionally created learning communities that empowered students and utilized their expertise to guide CT learning in their classrooms. Teachers recognized that asset-based approaches to CT instruction empowered not just their students but also themselves. By using asset-based CT pedagogies, early childhood teachers can better support students from marginalized communities, reducing achievement gaps and inequities in digital learning. 
    more » « less
  2. N/A (Ed.)
    Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students. 
    more » « less
  3. Lamberg, T. (Ed.)
    This paper focuses on the trajectories of two mathematics teachers in developing Political Conocimiento through one year of Professional Development (PD) on culturally responsive mathematics teaching. The PD was organized around teacher and student noticing, positionality, community partnerships and action research. The study found that the teachers’ discourse practices shifted from whiteness pedagogies towards politicized notions of schooling, caring, and mathematics learning. The paper discusses the dominant ideologies that teachers reproduced in their discourses around mathematics education and interactions with students. It also illustrates the teachers’ trajectories of Political Conocimiento through the deconstruction of the role that race plays in their positionalities, their classrooms, and school. 
    more » « less
  4. Christiansen, I (Ed.)
    Despite the importance of reasoning and proving in mathematics and mathematics education, little is known about how future teachers become proficient in integrating reasoning and proving in their teaching practices. In this article, we characterize this aspect of prospective secondary mathematics teachers’ (PSTs’) professional learning by drawing upon the commognitive theory. We offer a triple-layer conceptualization of (student)learning,teaching, andlearning to teachmathematics via reasoning and proving by focusing on the discourses students participate in (learning), the opportunities for reasoning and proving afforded to them (teaching), and how PSTs design and enrich such opportunities (learning to teach). We explore PSTs’ pedagogical discourse anchored in the lesson plans they designed, enacted, and modified as part of their participation in a university-based course:Mathematical Reasoning and Proving for Secondary Teachers. We identified four types of discursive modifications: structural, mathematical, reasoning-based, and logic-based. We describe how the potential opportunities for reasoning and proving afforded to students by these lesson plans changed as a result of these modifications. Based on our triple-layered conceptualization we illustrate how the lesson modifications and the resulting alterations to student learning opportunities can be used to characterize PSTs’ professional learning. We discuss the affordances of theorizing teacher practices with the same theoretical lens (grounded in commognition) to inquire student learning and teacher learning, and how lesson plans, as a proxy of teaching practices, can be used as a methodological tool to better understand PSTs’ professional learning. 
    more » « less
  5. This paper presents findings from a study of middle school science teachers’ professional learning activities designed to support the development of their debugging pedagogies. In two iterations of a professional learning activity, teachers worked to find bugs planted by facilitators in physical computing systems they were learning to integrate into their middle school science classrooms. We examine how teachers navigated the tension between developing their own troubleshooting skills versus supporting students’ skills in resolving inconsistencies between what they expect of the DaSH and what it actually does. We conclude with implications for the design of PL activities for supporting teachers’ debugging pedagogies. 
    more » « less