skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pseudo-bistability of viscoelastic shells
Viscoelastic shells subjected to a pressure loading exhibit rich and complex time-dependent responses. Here we focus on the phenomenon of pseudo-bistability, i.e. a viscoelastic shell can stay inverted when pressure is removed, and snap to its natural shape after a delay time. We model and explain the mechanism of pseudo-bistability with a viscoelastic shell model. It combines the small strain, moderate rotation shell theory with the standard linear solid as the viscoelastic constitutive law, and is applicable to shells with arbitrary axisymmetric shapes. As a case study, we investigate the pseudo-bistable behaviour of viscoelastic ellipsoidal shells. Using the proposed model, we successfully predict buckling of a viscoelastic ellipsoidal shell into its inverted configuration when subjected to an instantaneous pressure, creeping when the pressure is held, staying inverted after the pressure is removed, and eventually snapping back after a delay time. The stability transition of the shell from a monostable, temporarily bistable and eventually back to the monostable state is captured by examining the evolution of the instantaneous pressure–volume change relation at different time of the holding and releasing process. A systematic parametric study is conducted to investigate the effect of geometry, viscoelastic properties and loading history on the pseudo-bistable behaviour. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.  more » « less
Award ID(s):
2048219
PAR ID:
10439540
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
381
Issue:
2244
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We performed dynamic pressure buckling experiments on defect-seeded spherical shells made of a common silicone elastomer. Unlike in quasi-static experiments, shells buckled at ostensibly subcritical pressures, i.e. below the experimentally determined critical load at which buckling occurs elastically, often following a significant delay period from the time of load application. While emphasizing the close connections to elastic shell buckling, we rely on viscoelasticity to explain our observations. In particular, we demonstrate that the lower critical load may be determined from the material properties, which is rationalized by a simple analogy to elastic spherical shell buckling. We then introduce a model centred on empirical quantities to show that viscoelastic creep deformation lowers the critical load in the same predictable, quantifiable way that a growing defect would in an elastic shell. This allows us to capture how both the deflection at instability and the time delay depend on the applied pressure, material properties and defect geometry. These quantities are straightforward to measure in experiments. Thus, our work not only provides intuition for viscoelastic behaviour from an elastic shell buckling perspective but also offers an accessible pathway to introduce tunable, time-controlled actuation to existing mechanical actuators, e.g. pneumatic grippers. 
    more » « less
  2. Abstract This article studies the nonreciprocity of a system that consists of a bistable element coupled to a monostable element through a contactless magnetic interaction. To illustrate the concept, the bistable element is physically realized using a pendulum that interacts with a stationary magnet and the monostable element is a classical pendulum. A numerical model is implemented to simulate the nonlinear dynamics of the system. Both simulations and experiments show that the system exhibits a strong amplitude-dependent nonreciprocity in response to initial excitations. At small input amplitudes, the system has an intrawell response with minimal transmission of energy whether the excitation is exerted on the side of the bistable pendulum or on the other side. However, at high input amplitude, a strong nonreciprocal behavior is observed: excitation of the bistable pendulum causes an interwell response which considerably reduces the distance between the two pendulums and allows energy to be efficiently transmitted through the contactless magnetic interaction; excitation of the monostable pendulum does not cause any interwell response and results in limited energy transmission. The combination of bistability and contactless nonlinear interactions allows the system to exhibit very strong amplitude-dependent nonreciprocity, which may be useful in a wide range of applications. 
    more » « less
  3. Shape-shifting structures can transform and recover their shapes in response to external stimuli, but they often lack programmable, clock-like control over spatiotemporal deformation and motion, especially after stimuli are removed. Achieving autonomous, time-regulated spatiotemporal motion remains a grand challenge. Here, we present an autonomous delayed-jumping metashell that integrates viscoelastic materials with monostable architected structures to address this limitation. The metashell with tunable prestored elastic energy features an internal time clock enabling programmable autonomous delayed snapping and jumping after actuation removal. The delay spans from seconds to 2.4 d, with jumping heights decreasing from over 9 to 0.5 body heights. We demonstrate its utility in autonomous explosive seed dispersal devices, achieving wide-area omnidirectional distribution with high survival rates. This strategy paves the way for creating autonomous spatiotemporal shape-shifting structures with broad applications in robotics, morphing matter, ecology, and intelligent systems. 
    more » « less
  4. The bistable fluttering response of heavy inverted flags with different aspect ratios ( $AR$ ) is investigated to determine how the vortical structures affect the intermittent vibration response of the flag. A heavy inverted flag in a uniform flow may exhibit several response modes; amongst them are three major modes that occur over an extended velocity range: stationary, large-scale periodic oscillation and one-sided deflected modes. Significant hysteretic bistability is observed at the transition between these modes for all $AR$ , which is notably different from the conventional flag vibration with a fixed leading edge and free trailing edge where no hysteresis is observed at the lower $AR$ limit ( $AR<1$ ). The difference is associated with the distinct roles of vortices around the flag. Experiments with flags made of spring steel are conducted in a wind tunnel, where the flow speed is steadily increased and later decreased to obtain different oscillatory modes of the heavy inverted flags. The experimental results are used to validate the numerical model of the same problem. It is found that different critical velocities exist for increasing and decreasing flow velocities, and there is a sustained hysteresis for all $AR$ controlled by the initiation threshold and growth of the leading-edge and side-edge vortices. The effect of the vortices in the bistable oscillation regime is quantified by formulating a modal force partitioning approach. It is shown that $AR$ can significantly alter the static and dynamic vortex interaction with the flexible plate, thereby changing the flag's hysteresis behaviour and bistable response. 
    more » « less
  5. De Lorenzis, Laura; Papadrakakis, Manolis; Zohdi, Tarek I. (Ed.)
    This paper presents a graph-manifold iterative algorithm to predict the configurations of geometrically exact shells subjected to external loading. The finite element solutions are first stored in a weighted graph where each graph node stores the nodal displacement and nodal director. This collection of solutions is embedded onto a low-dimensional latent space through a graph isomorphism encoder. This graph embedding step reduces the dimensionality of the nonlinear data and makes it easier for the response surface to be constructed. The decoder, in return, converts an element in the latent space back to a weighted graph that represents a finite element solution. As such, the deformed configuration of the shell can be obtained by decoding the predictions in the latent space without running extra finite element simulations. For engineering applications where the shell is often subjected to concentrated loads or a local portion of the shell structure is of particular interest, we use the solutions stored in a graph to reconstruct a smooth manifold where the balance laws are enforced to control the curvature of the shell. The resultant computer algorithm enjoys both the speed of the nonlinear dimensional reduced solver and the fidelity of the solutions at locations where it matters. 
    more » « less