skip to main content


Title: Aspect ratio-dependent hysteresis response of a heavy inverted flag
The bistable fluttering response of heavy inverted flags with different aspect ratios ( $AR$ ) is investigated to determine how the vortical structures affect the intermittent vibration response of the flag. A heavy inverted flag in a uniform flow may exhibit several response modes; amongst them are three major modes that occur over an extended velocity range: stationary, large-scale periodic oscillation and one-sided deflected modes. Significant hysteretic bistability is observed at the transition between these modes for all $AR$ , which is notably different from the conventional flag vibration with a fixed leading edge and free trailing edge where no hysteresis is observed at the lower $AR$ limit ( $AR<1$ ). The difference is associated with the distinct roles of vortices around the flag. Experiments with flags made of spring steel are conducted in a wind tunnel, where the flow speed is steadily increased and later decreased to obtain different oscillatory modes of the heavy inverted flags. The experimental results are used to validate the numerical model of the same problem. It is found that different critical velocities exist for increasing and decreasing flow velocities, and there is a sustained hysteresis for all $AR$ controlled by the initiation threshold and growth of the leading-edge and side-edge vortices. The effect of the vortices in the bistable oscillation regime is quantified by formulating a modal force partitioning approach. It is shown that $AR$ can significantly alter the static and dynamic vortex interaction with the flexible plate, thereby changing the flag's hysteresis behaviour and bistable response.  more » « less
Award ID(s):
1943810
NSF-PAR ID:
10386364
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
942
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inverted flag configuration is inspired by biological structures (e.g. leaves on a tree branch), showing rich dynamics associated with instabilities at lower flow speeds than the regular flag configuration. In the biological counterpart, the arrangement of leaves and twigs on foliage creates a complex interacting environment that promotes certain dynamic fluttering modes. While enabling a large amplitude response for reduced flow speeds is advantageous in emerging fields such as energy harvesting, still, little is known about the consequence of such interactions. In this work, we numerically study the canonical bio-inspired problem of the flow-structural interaction of a 2D inverted flag behind a cylindrical bluff body, mimicking a leaf behind a tree branch, to investigate its distinct fluttering regimes. The separation distance between the cylinder and flag is gradually modified to determine the effective distance beyond which small-amplitude or large-amplitude flapping occurs for different flow velocities. It is shown that the flag exhibits a periodic large amplitude−low frequency response mode when the cylinder is placed at a sufficiently large distance in front of the flag. At smaller distances, when the flag is within the immediate wake of the cylinder, the flag undergoes a high frequency−small amplitude response. Finally, the flag’s piezoelectric power harvesting capability is investigated numerically and experimentally for varying geometrical and electrical parameters associated with these two conditions. Two separate optimal response modes with the highest energy output have also been identified. 
    more » « less
  2. Abstract: This paper aims to develop a novel concept for energy harvesting via flexible inverted flags combining photovoltaic cells with piezoelectric flexible films. Using technology currently available, we have designed and fabricated piezo-pyro-photo-electric harvesters made of polyvinylidene fluoride (PVDF) piezoelectric elements combined with mini solar panels made of silicon. Experimental measurements of the motion dynamics and power generation were collected for the flags when subjected to wind, heat, and light sources simultaneously and individually. Results indicate a significant improvement in energy harvesting capability compared to isolated single piezoelectric devices. Thus, we anticipate a substantial impact of piezo- pyro-photo-electric energy harvesting device applications where remote power generation is needed. The Flag uses flexible piezoelectric and pyroelectric strips and flexible photovoltaic cells panel. The piezo-pyro- simultaneously generates power through movement and heat, respectively, while the photovoltaic cells harvest solar energy to produce electric power. The beauty of this Flag is to develop power day and night depending on the energy sources available. The basic concept is presented and validated by laboratory experiments with controlled airflow, light, and infrared heat. The maximum voltage generated was 60 mV when the Flag was simultaneously exposed to low-level wind, thermal and light energies. 
    more » « less
  3. Surface waves are excited by mechanical vibration of a cylindrical container having an air/water interface pinned at the rim, and the dynamics of pattern formation is analysed from both an experimental and theoretical perspective. The wave conforms to the geometry of the container and its spatial structure is described by the mode number pair ( $n,\ell$ ) that is identified by long exposure time white light imaging. A laser light system is used to detect the surface wave frequency, which exhibits either a (i) harmonic response for low driving amplitude edge waves or (ii) sub-harmonic response for driving amplitude above the Faraday wave threshold. The first 50 resonant modes are discovered. Control of the meniscus geometry is used to great effect. Specifically, when flat, edge waves are suppressed and only Faraday waves are observed. For a concave meniscus, edge waves are observed and, at higher amplitudes, Faraday waves appear as well, leading to complicated mode mixing. Theoretical predictions for the natural frequency of surface oscillations for an inviscid liquid in a cylindrical container with a pinned contact line are made using the Rayleigh–Ritz procedure and are in excellent agreement with experimental results. 
    more » « less
  4. In recent years, there has been a growing interest in using tandem foils to mimic and study fish swimming, and to inform underwater vehicle design. Though much effort has been put to understanding the propulsion mechanisms of a tandem-foil system, the stability of such a system and the mechanisms for maintaining it remain an open question. In this study, a 3-foil system in an in-line configuration is used towards understanding the hydrodynamics of lateral stability. The foils actively pitch with varying phase. To quantify lateral force oscillation, the standard deviation of the lateral force, 𝝈𝝈𝒀𝒀, calculated over one typical flapping cycle is used, to account for the amount of variation in the lateral force experienced by the system of 3 foils. The higher the standard deviation, the more the spread in the lateral force cycle data, the more lateral momentum exchanged between the flow and the foils, and the less stable the system is. Through phase variations, it is found that the lateral force is minimized when the phases of the three foils are approximately, though not exactly, evenly distributed. The least stable system is found to be the one with the foils all in phase. Systems that are more laterally stable are found to tend to have narrower envelopes of regions around the foils with high momentum. Near-wake of the foils, the envelopes of stable systems are also found to have pronounced convergent sections, whereas the envelope of the less stable systems are found to diverge without much interruption. In the far wake, coherent, singular thrust jets, along with orderly 2-S vortices are found to form in the two best performing cases. In less stable cases, the thrust jets are found to be branched. Corresponding to the width of the high-momentum envelopes, lateral jets are found to exist in the gaps between neighboring foils, the strengths of which vary based on stability, with the lateral jets being more pronounced in the less stable cases (cases with high amount of lateral force oscillation). Peak lateral forces are found to coincide with moments of pressure gradient build-up across the foils. The pressure-driven flow near the trailing edge of the foils then creates trailing-edge vortices, and correspondingly, lateral gap flows. Moments of peak and plateau lateral force on an individual foil in the system are found to coincide with the initiation and shedding of trailing-edge vortices, respectively. The formation of trailing-edge vortices, lateral jets and cross-stream flows in gaps are closely intertwined, and all are 1. Indicative of large lateral momentum oscillation, and 2. The results of pressure gradient build-up across foils. 
    more » « less
  5. The vibration of a compliant panel under a shock / boundary layer interaction (SBLI) induced by a compression ramp in a Mach 2 flow, is investigated experimentally. The panel is made from brass shim stock of length (streamwise), width (spanwise) and thickness of 122 mm by 63.5 mm by 0.25 mm, respectively. The 20° compression ramp is placed near the downstream edge of the compliant panel, and it creates a shock-induced turbulent separated flow that extends over the downstream 20% of the panel. Large pressure fluctuations occur in the region of the separation shock foot unsteadiness. The pressure fluctuations increase vibration amplitudes of the higher panel modes, especially the second mode, which has an antinode near the shock foot region. In this work, the authors use structural modifications of the baseline compliant panel to mitigate vibrations induced by the large pressure fluctuations of the shock foot unsteadiness. A thin rib is attached in the spanwise direction to the lee side of the panel at the location of SBLI. In one configuration, the rib is attached to the panel using epoxy adhesive, which creates a stiff connection. In another configuration, the rib is attached to the panel via double-sided viscoelastic tape, which adds significant damping to the system. The panel vibration and surface pressure field are measured using stereoscopic digital image correlation and pressure sensitive paint. Results show that especially the second vibration mode of the panel is reduced through the addition of the rib. This effect is more pronounced in the case where the viscoelastic tape was used, where a 72% reduction in vibration is observed. 
    more » « less