skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Py-Feat: Python Facial Expression Analysis Toolbox
Abstract Studying facial expressions is a notoriously difficult endeavor. Recent advances in the field of affective computing have yielded impressive progress in automatically detecting facial expressions from pictures and videos. However, much of this work has yet to be widely disseminated in social science domains such as psychology. Current state-of-the-art models require considerable domain expertise that is not traditionally incorporated into social science training programs. Furthermore, there is a notable absence of user-friendly and open-source software that provides a comprehensive set of tools and functions that support facial expression research. In this paper, we introduce Py-Feat, an open-source Python toolbox that provides support for detecting, preprocessing, analyzing, and visualizing facial expression data. Py-Feat makes it easy for domain experts to disseminate and benchmark computer vision models and also for end users to quickly process, analyze, and visualize face expression data. We hope this platform will facilitate increased use of facial expression data in human behavior research.  more » « less
Award ID(s):
1848370
PAR ID:
10439630
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Affective Science
Volume:
4
Issue:
4
ISSN:
2662-2041
Format(s):
Medium: X Size: p. 781-796
Size(s):
p. 781-796
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Facial expressions of emotion play an important role in human social interactions. However, posed expressions of emotion are not always the same as genuine feelings. Recent research has found that facial expressions are increasingly used as a tool for understanding social interactions instead of personal emotions. Therefore, the credibility assessment of facial expressions, namely, the discrimination of genuine (spontaneous) expressions from posed (deliberate/volitional/deceptive) ones, is a crucial yet challenging task in facial expression understanding. With recent advances in computer vision and machine learning techniques, rapid progress has been made in recent years for automatic detection of genuine and posed facial expressions. This paper presents a general review of the relevant research, including several spontaneous vs. posed (SVP) facial expression databases and various computer vision based detection methods. In addition, a variety of factors that will influence the performance of SVP detection methods are discussed along with open issues and technical challenges in this nascent field. 
    more » « less
  2. The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues. 
    more » « less
  3. Abstract Most of the research in the field of affective computing has focused on detecting and classifying human emotions through electroencephalogram (EEG) or facial expressions. Designing multimedia content to evoke certain emotions has been largely motivated by manual rating provided by users. Here we present insights from the correlation of affective features between three modalities namely, affective multimedia content, EEG, and facial expressions. Interestingly, low-level Audio-visual features such as contrast and homogeneity of the video and tone of the audio in the movie clips are most correlated with changes in facial expressions and EEG. We also detect the regions associated with the human face and the brain (in addition to the EEG frequency bands) that are most representative of affective responses. The computational modeling between the three modalities showed a high correlation between features from these regions and user-reported affective labels. Finally, the correlation between different layers of convolutional neural networks with EEG and Face images as input provides insights into human affection. Together, these findings will assist in (1) designing more effective multimedia contents to engage or influence the viewers, (2) understanding the brain/body bio-markers of affection, and (3) developing newer brain-computer interfaces as well as facial-expression-based algorithms to read emotional responses of the viewers. 
    more » « less
  4. IntroductionEarly and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis. MethodsThis study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet). ResultsDespite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality. DiscussionOur research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context. 
    more » « less
  5. Emotion recognition in social situations is a complex task that requires integrating information from both facial expressions and the situational context. While traditional approaches to automatic emotion recognition have focused on decontextualized signals, recent research emphasizes the importance of context in shaping emotion perceptions. This paper contributes to the emerging field of context-based emotion recognition by leveraging psychological theories of human emotion perception to inform the design of automated methods. We propose an approach that combines emotion recognition methods with Bayesian Cue Integration (BCI) to integrate emotion inferences from decontextualized facial expressions and contextual knowledge inferred via Large-language Models. We test this approach in the context of interpreting facial expressions during a social task, the prisoner’s dilemma. Our results provide clear support for BCI across a range of automatic emotion recognition methods. The best automated method achieved results comparable to human observers, suggesting the potential for this approach to advance the field of affective computing. 
    more » « less