skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 15, 2025

Title: Knowledge-based Emotion Recognition using Large Language Models
Emotion recognition in social situations is a complex task that requires integrating information from both facial expressions and the situational context. While traditional approaches to automatic emotion recognition have focused on decontextualized signals, recent research emphasizes the importance of context in shaping emotion perceptions. This paper contributes to the emerging field of context-based emotion recognition by leveraging psychological theories of human emotion perception to inform the design of automated methods. We propose an approach that combines emotion recognition methods with Bayesian Cue Integration (BCI) to integrate emotion inferences from decontextualized facial expressions and contextual knowledge inferred via Large-language Models. We test this approach in the context of interpreting facial expressions during a social task, the prisoner’s dilemma. Our results provide clear support for BCI across a range of automatic emotion recognition methods. The best automated method achieved results comparable to human observers, suggesting the potential for this approach to advance the field of affective computing.  more » « less
Award ID(s):
2150187
PAR ID:
10566504
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Location:
GLASGOW United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Facial expressions of emotion play an important role in human social interactions. However, posed expressions of emotion are not always the same as genuine feelings. Recent research has found that facial expressions are increasingly used as a tool for understanding social interactions instead of personal emotions. Therefore, the credibility assessment of facial expressions, namely, the discrimination of genuine (spontaneous) expressions from posed (deliberate/volitional/deceptive) ones, is a crucial yet challenging task in facial expression understanding. With recent advances in computer vision and machine learning techniques, rapid progress has been made in recent years for automatic detection of genuine and posed facial expressions. This paper presents a general review of the relevant research, including several spontaneous vs. posed (SVP) facial expression databases and various computer vision based detection methods. In addition, a variety of factors that will influence the performance of SVP detection methods are discussed along with open issues and technical challenges in this nascent field. 
    more » « less
  2. In recent news, organizations have been considering the use of facial and emotion recognition for applications involving youth such as tackling surveillance and security in schools. However, the majority of efforts on facial emotion recognition research have focused on adults. Children, particularly in their early years, have been shown to express emotions quite differently than adults. Thus, before such algorithms are deployed in environments that impact the wellbeing and circumstance of youth, a careful examination should be made on their accuracy with respect to appropriateness for this target demographic. In this work, we utilize several datasets that contain facial expressions of children linked to their emotional state to evaluate eight different commercial emotion classification systems. We compare the ground truth labels provided by the respective datasets to the labels given with the highest confidence by the classification systems and assess the results in terms of matching score (TPR), positive predictive value, and failure to compute rate. Overall results show that the emotion recognition systems displayed subpar performance on the datasets of children's expressions compared to prior work with adult datasets and initial human ratings. We then identify limitations associated with automated recognition of emotions in children and provide suggestions on directions with enhancing recognition accuracy through data diversification, dataset accountability, and algorithmic regulation. 
    more » « less
  3. The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues. 
    more » « less
  4. As an intuitive way of expression emotion, the animated Graphical Interchange Format (GIF) images have been widely used on social media. Most previous studies on automated GIF emotion recognition fail to effectively utilize GIF’s unique properties, and this potentially limits the recognition performance. In this study, we demonstrate the importance of human related information in GIFs and conduct humancentered GIF emotion recognition with a proposed Keypoint Attended Visual Attention Network (KAVAN). The framework consists of a facial attention module and a hierarchical segment temporal module. The facial attention module exploits the strong relationship between GIF contents and human characters, and extracts frame-level visual feature with a focus on human faces. The Hierarchical Segment LSTM (HSLSTM) module is then proposed to better learn global GIF representations. Our proposed framework outperforms the state-of-the-art on the MIT GIFGIF dataset. Furthermore, the facial attention module provides reliable facial region mask predictions, which improves the model’s interpretability. 
    more » « less
  5. Emotion recognition algorithms recognize, infer, and harvest emotions using data sources such as social media behavior, streaming service use, voice, facial expressions, and biometrics in ways often opaque to the people providing these data. People's attitudes towards emotion recognition and the harms and outcomes they associate with it are important yet unknown. Focusing on social media, we interviewed 13 adult U.S. social media users to fill this gap. We find that people view emotions as insights to behavior, prone to manipulation, intimate, vulnerable, and complex. Many find emotion recognition invasive and scary, associating it with autonomy and control loss. We identify two categories of emotion recognition's risks: individual and societal. We discuss findings' implications for algorithmic accountability and argue for considering emotion data as sensitive. Using a Science and Technology Studies lens, we advocate that technology users should be considered as a relevant social group in emotion recognition advancements. 
    more » « less