We present a three-dimensional computational study of the impact of external magnetic fields on the dynamics of superparamagnetic ferrofluid droplets and rheology of dilute ferrofluid emulsions in planar extensional flows. Specifically, we show how the intensity and direction of uniform magnetic fields affect the planar extensional rheology of ferrofluid emulsions by changing the shape and magnetization of the constituent ferrofluid droplets in suspension. We find that the two traditional extensional viscosities associated with the normal stresses of the bulk emulsion in extension either remain constant or increase with the field intensity; the only exception occurs when the field direction is perpendicular to the extension plane, where increasing the field intensity keeps the planar extensional viscosity constant and modestly decreases the second extensional viscosity. We also find that the droplet tilts in the flow when the external field is not aligned with one of the flow main directions, which changes the recirculation pattern and flow topology inside the droplet. At the microscopic level, the droplet experiences a magnetic torque because of a small misalignment between its magnetization and the external field direction. At the macroscopic level, the bulk emulsion experiences a field-induced internal torque that leads to a nonsymmetric stress tensor with unexpected shear components in extension. To account for this unconventional stress-strain response, we introduce new extensional material functions such as shear and rotational viscosity coefficients that unveil novel rheological signatures of ferrofluid emulsions in planar extensional flows. This study offers new insights into applications based on the field-assisted manipulation of ferrofluid droplets and sheds light on the potential of ferrofluid emulsions as a model system for chiral fluids with internal rotational degrees of freedom that can be activated and controlled by coupling static magnetic fields with hydrodynamic flows.
more »
« less
Study on micromagnets induced local wavy mixing in a microfluidic channel
The phenomenon of ferrofluid-water mixing is investigated using a double-layer magnetic micromixer, in which a layer of micromagnet bars is placed immediately below the fluid layer. A wavy pattern of the ferrofluid–water interface is surprisingly observed at each micromagnet responsible for improved mixing. The mechanism causing the wavy mixing is discovered and analyzed through experimental measurements and numerical simulations, and the mixing efficiency under different flow conditions is discussed. For flows with Re ≪ 1, the resultant steep gradient of opposing magnetic forces by micromagnets in the ferrofluid region gives rise to a local pressure source that induces a transverse/spanwise pressure gradient and activates momentum transfer between fluids. The current finding enables effective localized mixing of ferrofluids with a small footprint and, thus, has great potential to achieve fast mixing for high-throughput flows with an integrated parallel system of multiple microfluidic channels and micromagnets.
more »
« less
- Award ID(s):
- 1920039
- PAR ID:
- 10439715
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 117
- Issue:
- 13
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The logarithmic law of the wall does not capture the mean flow when a boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the mean flow is affected by the spatio-temporal history of the imposed pressure gradient; and accounting for history effects remains a challenge. This work aims to develop a universal mean flow scaling for boundary layers subjected to arbitrary adverse or/and favourable pressure gradients. We derive from the Navier–Stokes equation a velocity transformation that accounts for the history effects and maps the mean flow to the canonical law of the wall. The transformation is tested against channel flows with a suddenly imposed adverse or favourable pressure gradient, boundary layer flows subjected to an adverse pressure gradient, and Couette–Poiseuille flows with a streamwise pressure gradient. It is found that the transformed velocity profiles follow closely the equilibrium law of the wall.more » « less
-
A transient stability flow analysis is performed using the unsteady laminar boundary layer equations. The flow dynamics are studied via the Navier–Stokes equations. In the case of external spatially developing flow, the differential equations are reduced via Prandtl or boundary-layer assumptions, consisting of continuity and momentum conservation equations. Prescription of streamwise pressure gradients (decelerating and accelerating flows) is carried out by an impulsively started Falkner–Skan (FS) or wedge-flow similarity flow solution in the case of flat plate or a Blasius solution for particular zero-pressure gradient case. The obtained mean streamwise velocity and its derivatives from FS flows are then inserted into the well-known Orr–Sommerfeld equation of small disturbances at different dimensionless times (τ). Finally, the corresponding eigenvalues are dynamically computed for temporal stability analysis. A finite difference algorithm is effectively applied to solve the Orr–Sommerfeld equations. It is observed that flow acceleration or favorable pressure gradients (FPGs) lead to a significantly shorter transient period before reaching steady-state conditions, as the developed shear layer is notably thinner compared to cases with adverse pressure gradients (APGs). During the transient phase (i.e., for τ<1), the majority of the flow modifications are confined to the innermost 20–25% of the boundary layer, in proximity to the wall. In the context of temporal flow stability, the magnitude of the pressure gradient is pivotal in determining the streamwise extent of the Tollmien–Schlichting (TS) waves. In highly accelerated laminar flows, these waves experience considerable elongation. Conversely, under the influence of a strong adverse pressure gradient, the characteristic streamwise length of the smallest unstable wavelength, which is necessary for destabilization via TS waves, is significantly reduced. Furthermore, flows subjected to acceleration (β > 0) exhibit a higher propensity to transition towards a more stable state during the initial transient phase. For instance, the time response required to reach the steady-state critical Reynolds number was approximately 1τ for β = 0.18 (FPG) and τ = 6.8 for β = −0.18 (APG).more » « less
-
Ferrofluids are colloidal suspensions of iron oxide nanoparticles (IONPs) within aqueous or nonaqueous liquids that exhibit strong magnetic properties. These magnetic properties allow ferrofluids to be manipulated and controlled when exposed to magnetic fields. This review aims to provide the current scope and research opportunities regarding the methods of synthesis of nanoparticles, surfactants, and carrier liquids for ferrofluid production, along with the rheology and applications of ferrofluids within the fields of medicine, water treatment, and mechanical engineering. A ferrofluid is composed of IONPs, a surfactant that coats the magnetic IONPs to prevent agglomeration, and a carrier liquid that suspends the IONPs. Coprecipitation and thermal decomposition are the main methods used for the synthesis of IONPs. Despite the fact that thermal decomposition provides precise control on the nanoparticle size, coprecipitation is the most used method, even when the oxidation of iron can occur. This oxidation alters the ratio of maghemite/magnetite, influencing the magnetic properties of ferrofluids. Strategies to overcome iron oxidation have been proposed, such as the use of an inert atmosphere, adjusting the Fe(II) and Fe(III) ratio to 1:2, and the exploration of other metals with the oxidation state +2. Surfactants and carrier liquids are chosen according to the ferrofluid application to ensure stability. Hence, a compatible carrier liquid (polar or nonpolar) is selected, and then, a surfactant, mainly a polymer, is embedded in the IONPs, providing a steric barrier. Due to the variety of surfactants and carrier liquids, the rheological properties of ferrofluids are an important response variable evaluated when synthesizing ferrofluids. There are many reported applications of ferrofluids, including biosensing, medical imaging, medicinal therapy, magnetic nanoemulsions, and magnetic impedance. Other applications include water treatment, energy harvesting and transfer, and vibration control. To progress from synthesis to applications, research is still ongoing to ensure control of the ferrofluids’ properties.more » « less
-
Abstract In classic models of the tidally averaged gravitationally driven estuarine circulation, denser salty oceanic water moves up the estuary near the bottom, while less dense riverine water flows toward the ocean near the surface. Traditionally, it is assumed that the associated pressure gradient forces and salt advection are balanced by vertical mixing. This study, however, demonstrates that lateral (across the estuary width) transport processes are essential for maintaining the estuarine circulation. This is because for realistic estuarine bathymetry, the depth-integrated salt transport up the estuary is enhanced in the deeper estuary channel. A closed salt budget then requires the lateral transport of this excess salt in the deeper channel toward the estuarine flanks. To understand how such lateral transport affects the estuarine salt and momentum balances, we devise an idealized model with explicit lateral transport focusing on tidally averaged lateral mixing effects. Solutions for the along-estuary velocity and salinity are nondimensionalized to depend only on one single nondimensional parameter, referred to as the Fischer number, which describes the relative importance of lateral to vertical tidal mixing. For relatively strong lateral tidal mixing (greater Fischer number), salinity and velocity variations are predominantly vertical. For relatively weak lateral tidal mixing (smaller Fischer number), salinity and velocity variations are predominantly lateral. Overall, lateral transport greatly affects the estuarine circulation and controls the estuarine salinity intrusion length, which is demonstrated to scale inversely with the Fischer number.more » « less
An official website of the United States government

