skip to main content


Title: A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity

We introduce a two-strain model with asymmetric temporary immunity periods and partial cross-immunity. We derive explicit conditions for competitive exclusion and coexistence of the strains depending on the strain-specific basic reproduction numbers, temporary immunity periods, and degree of cross-immunity. The results of our bifurcation analysis suggest that, even when two strains share similar basic reproduction numbers and other epidemiological parameters, a disparity in temporary immunity periods and partial or complete cross-immunity can provide a significant competitive advantage. To analyze the dynamics, we introduce a quasi-steady state reduced model which assumes the original strain remains at its endemic steady state. We completely analyze the resulting reduced planar hybrid switching system using linear stability analysis, planar phase-plane analysis, and the Bendixson-Dulac criterion. We validate both the full and reduced models with COVID-19 incidence data, focusing on the Delta (B.1.617.2), Omicron (B.1.1.529), and Kraken (XBB.1.5) variants. These numerical studies suggest that, while early novel strains of COVID-19 had a tendency toward dramatic takeovers and extinction of ancestral strains, more recent strains have the capacity for co-existence.

 
more » « less
Award ID(s):
2213390
NSF-PAR ID:
10439787
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematical Biosciences and Engineering
Volume:
20
Issue:
9
ISSN:
1551-0018
Page Range / eLocation ID:
16083 to 16113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider the dynamics of a virus spreading through a population that produces a mutant strain with the ability to infect individuals that were infected with the established strain. Temporary cross-immunity is included using a time delay, but is found to be a harmless delay. We provide some sufficient conditions that guarantee local and global asymptotic stability of the disease-free equilibrium and the two boundary equilibria when the two strains outcompete one another. It is shown that, due to the immune evasion of the emerging strain, the reproduction number of the emerging strain must be significantly lower than that of the established strain for the local stability of the established-strain-only boundary equilibrium. To analyze the unique coexistence equilibrium we apply a quasi steady-state argument to reduce the full model to a two-dimensional one that exhibits a global asymptotically stable established-strain-only equilibrium or global asymptotically stable coexistence equilibrium. Our results indicate that the basic reproduction numbers of both strains govern the overall dynamics, but in nontrivial ways due to the inclusion of cross-immunity. The model is applied to study the emergence of the SARS-CoV-2 Delta variant in the presence of the Alpha variant using wastewater surveillance data from the Deer Island Treatment Plant in Massachusetts, USA.

     
    more » « less
  2. COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60–80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12–29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence. 
    more » « less
  3. Abstract Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those groups that are more vulnerable to infection. 
    more » « less
  4. Adrish, Muhammad (Ed.)
    Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between R t ~1.1–1.3 from the genomic and case incidence data. Moreover, the mean estimate of R t has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures. 
    more » « less
  5. A key scientific challenge during the outbreak of novel infectious diseases is to predict how the course of the epidemic changes under countermeasures that limit interaction in the population. Most epidemiological models do not consider the role of mutations and heterogeneity in the type of contact events. However, pathogens have the capacity to mutate in response to changing environments, especially caused by the increase in population immunity to existing strains, and the emergence of new pathogen strains poses a continued threat to public health. Further, in the light of differing transmission risks in different congregate settings (e.g., schools and offices), different mitigation strategies may need to be adopted to control the spread of infection. We analyze a multilayer multistrain model by simultaneously accounting for i) pathways for mutations in the pathogen leading to the emergence of new pathogen strains, and ii) differing transmission risks in different settings, modeled as network layers. Assuming complete cross-immunity among strains, namely, recovery from any infection prevents infection with any other (an assumption that will need to be relaxed to deal with COVID-19 or influenza), we derive the key epidemiological parameters for the multilayer multistrain framework. We demonstrate that reductions to existing models that discount heterogeneity in either the strain or the network layers may lead to incorrect predictions. Our results highlight that the impact of imposing/lifting mitigation measures concerning different contact network layers (e.g., school closures or work-from-home policies) should be evaluated in connection with their effect on the likelihood of the emergence of new strains.

     
    more » « less