skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predictive Value of Early Autism Detection Models Based on Electronic Health Record Data Collected Before Age 1 Year
Importance Autism detection early in childhood is critical to ensure that autistic children and their families have access to early behavioral support. Early correlates of autism documented in electronic health records (EHRs) during routine care could allow passive, predictive model-based monitoring to improve the accuracy of early detection. Objective To quantify the predictive value of early autism detection models based on EHR data collected before age 1 year. Design, Setting, and Participants This retrospective diagnostic study used EHR data from children seen within the Duke University Health System before age 30 days between January 2006 and December 2020. These data were used to train and evaluate L2-regularized Cox proportional hazards models predicting later autism diagnosis based on data collected from birth up to the time of prediction (ages 30-360 days). Statistical analyses were performed between August 1, 2020, and April 1, 2022. Main Outcomes and Measures Prediction performance was quantified in terms of sensitivity, specificity, and positive predictive value (PPV) at clinically relevant model operating thresholds. Results Data from 45 080 children, including 924 (1.5%) meeting autism criteria, were included in this study. Model-based autism detection at age 30 days achieved 45.5% sensitivity and 23.0% PPV at 90.0% specificity. Detection by age 360 days achieved 59.8% sensitivity and 17.6% PPV at 81.5% specificity and 38.8% sensitivity and 31.0% PPV at 94.3% specificity. Conclusions and Relevance In this diagnostic study of an autism screening test, EHR-based autism detection achieved clinically meaningful accuracy by age 30 days, improving by age 1 year. This automated approach could be integrated with caregiver surveys to improve the accuracy of early autism screening.  more » « less
Award ID(s):
1712867
PAR ID:
10440016
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
JAMA Network Open
Volume:
6
Issue:
2
ISSN:
2574-3805
Page Range / eLocation ID:
e2254303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables. 
    more » « less
  2. ABSTRACT Early identification and intervention often leads to improved life outcomes for individuals with Autism Spectrum Disorder (ASD). However, traditional diagnostic methods are time-consuming, frequently delaying treatment. This study examines the application of machine learning (ML) techniques to 10-question Quantitative Checklist for Autism in Toddlers (QCHAT-10) datasets, aiming to evaluate the predictive value of questionnaire features and overall accuracy metrics across different cultures. We trained models using three distinct datasets from three different countries: Poland, New Zealand, and Saudi Arabia. The New Zealand and Saudi Arabian-trained models were both tested on the Polish dataset, which consisted of diagnostic class labels derived from clinical diagnostic processes. The Decision Tree, Random Forest, and XGBoost models were evaluated, with XGBoost consistently performing best. Feature importance rankings revealed little consistency across models; however, Recursive Feature Elimination (RFE) to select the models with the four most predictive features retained three common features. Both models performed similarly on the Polish test dataset with clinical diagnostic labels, with the New Zealand models with all 13 features achieving an AUROC of 0.94 ± 0.06, and the Saudi Model having an AUROC of 93% ± 6. This compared favorably to the cross-validation analysis of a Polish-trained model, which had an AUROC of 94% ± 5, suggesting that answers to the QCHAT-10 can be predictive of an official autism diagnosis, even across cultures. The New Zealand model with four features had an AUROC of 85% ± 13, and the Saudi model had a similar result of 87% ± 11. These results were somewhat lower than the Polish cross-validation AUROC of 91% ± 5. Adjusting probability thresholds improved sensitivity in some models, which is crucial for screening tools. However, this threshold adjustment often resulted in low levels of specificity during the final testing phase. Our findings suggest that these screening tools may generalize well across cultures; however, more research is needed regarding differences in feature importance for different populations. 
    more » « less
  3. Abstract Introduction This research examined the classification accuracy of the Quick Interactive Language Screener (QUILS) for identifying preschool-aged children (3;0 to 6;9) with developmental language disorder (DLD). We present data from two independent samples that varied in prevalence and diagnostic reference standard. Methods Study 1 included a clinical sample of children (54 with DLD; 13 without) who completed the QUILS and a standardized assessment of expressive grammar (Syntax subtest from the Diagnostic Evaluation of Language Variation–Norm Referenced; Structured Photographic Expressive Language Test–Preschool 2nd Edition; or Structured Photographic Expressive Language Test–3 rd Edition). Study 2 included a community sample of children (25 with DLD; 101 without) who completed the QUILS and the Auditory Comprehension subtest of the Preschool Language Scales–5th Edition (PLS-5; Zimmerman et al., 2011). Discriminant analyses were conducted to compare classification accuracy (i.e., sensitivity and specificity) using the normreferenced cut score (< 25th percentile) with empirically derived cut scores. Results In Study 1, the QUILS led to low fail rates (i.e., high specificity) in children without impairment and statistically significant group differences as a function of children's clinical status; however, only 65% of children with DLD were accurately identified using the norm-referenced cutoff. In Study 2, 76% of children with DLD were accurately identified at the 25th percentile cutoff and accuracy improved to 84% when an empirically derived cutoff (<32nd percentile) was applied. Conclusions Findings support the clinical application of the QUILS as a component of the screening process for identifying the presence or absence of DLD in community samples of preschool-aged children. 
    more » « less
  4. null (Ed.)
    Background Conventional diagnosis of COVID-19 with reverse transcription polymerase chain reaction (RT-PCR) testing (hereafter, PCR) is associated with prolonged time to diagnosis and significant costs to run the test. The SARS-CoV-2 virus might lead to characteristic patterns in the results of widely available, routine blood tests that could be identified with machine learning methodologies. Machine learning modalities integrating findings from these common laboratory test results might accelerate ruling out COVID-19 in emergency department patients. Objective We sought to develop (ie, train and internally validate with cross-validation techniques) and externally validate a machine learning model to rule out COVID 19 using only routine blood tests among adults in emergency departments. Methods Using clinical data from emergency departments (EDs) from 66 US hospitals before the pandemic (before the end of December 2019) or during the pandemic (March-July 2020), we included patients aged ≥20 years in the study time frame. We excluded those with missing laboratory results. Model training used 2183 PCR-confirmed cases from 43 hospitals during the pandemic; negative controls were 10,000 prepandemic patients from the same hospitals. External validation used 23 hospitals with 1020 PCR-confirmed cases and 171,734 prepandemic negative controls. The main outcome was COVID 19 status predicted using same-day routine laboratory results. Model performance was assessed with area under the receiver operating characteristic (AUROC) curve as well as sensitivity, specificity, and negative predictive value (NPV). Results Of 192,779 patients included in the training, external validation, and sensitivity data sets (median age decile 50 [IQR 30-60] years, 40.5% male [78,249/192,779]), AUROC for training and external validation was 0.91 (95% CI 0.90-0.92). Using a risk score cutoff of 1.0 (out of 100) in the external validation data set, the model achieved sensitivity of 95.9% and specificity of 41.7%; with a cutoff of 2.0, sensitivity was 92.6% and specificity was 59.9%. At the cutoff of 2.0, the NPVs at a prevalence of 1%, 10%, and 20% were 99.9%, 98.6%, and 97%, respectively. Conclusions A machine learning model developed with multicenter clinical data integrating commonly collected ED laboratory data demonstrated high rule-out accuracy for COVID-19 status, and might inform selective use of PCR-based testing. 
    more » « less
  5. Abstract Background Low specificity in current breast imaging modalities leads to increased unnecessary follow-ups and biopsies. The purpose of this study is to evaluate the efficacy of combining the quantitative parameters of high-definition microvasculature imaging (HDMI) and 2D shear wave elastography (SWE) with clinical factors (lesion depth and age) for improving breast lesion differentiation. Methods In this prospective study, from June 2016 through April 2021, patients with breast lesions identified on diagnostic ultrasound and recommended for core needle biopsy were recruited. HDMI and SWE were conducted prior to biopsies. Two new HDMI parameters, Murray’s deviation and bifurcation angle, and a new SWE parameter, mass characteristic frequency, were included for quantitative analysis. Lesion malignancy prediction models based on HDMI only, SWE only, the combination of HDMI and SWE, and the combination of HDMI, SWE and clinical factors were trained via elastic net logistic regression with 70% (360/514) randomly selected data and validated with the remaining 30% (154/514) data. Prediction performances in the validation test set were compared across models with respect to area under the ROC curve as well as sensitivity and specificity based on optimized threshold selection. Results A total of 508 participants (mean age, 54 years ± 15), including 507 female participants and 1 male participant, with 514 suspicious breast lesions (range, 4–72 mm, median size, 13 mm) were included. Of the lesions, 204 were malignant. The SWE-HDMI prediction model, combining quantitative parameters from SWE and HDMI, with AUC of 0.973 (95% CI 0.95–0.99), was significantly higher than the result predicted with the SWE model or HDMI model alone. With an optimal cutoff of 0.25 for the malignancy probability, the sensitivity and specificity were 95.5% and 89.7%, respectively. The specificity was further improved with the addition of clinical factors. The corresponding model defined as the SWE-HDMI-C prediction model had an AUC of 0.981 (95% CI 0.96–1.00). Conclusions The SWE-HDMI-C detection model, a combination of SWE estimates, HDMI quantitative biomarkers and clinical factors, greatly improved the accuracy in breast lesion characterization. 
    more » « less