skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 13, 2025

Title: Evaluating Multicultural Autism Screening for Toddlers Using Machine Learning on the QCHAT-10
ABSTRACT Early identification and intervention often leads to improved life outcomes for individuals with Autism Spectrum Disorder (ASD). However, traditional diagnostic methods are time-consuming, frequently delaying treatment. This study examines the application of machine learning (ML) techniques to 10-question Quantitative Checklist for Autism in Toddlers (QCHAT-10) datasets, aiming to evaluate the predictive value of questionnaire features and overall accuracy metrics across different cultures. We trained models using three distinct datasets from three different countries: Poland, New Zealand, and Saudi Arabia. The New Zealand and Saudi Arabian-trained models were both tested on the Polish dataset, which consisted of diagnostic class labels derived from clinical diagnostic processes. The Decision Tree, Random Forest, and XGBoost models were evaluated, with XGBoost consistently performing best. Feature importance rankings revealed little consistency across models; however, Recursive Feature Elimination (RFE) to select the models with the four most predictive features retained three common features. Both models performed similarly on the Polish test dataset with clinical diagnostic labels, with the New Zealand models with all 13 features achieving an AUROC of 0.94 ± 0.06, and the Saudi Model having an AUROC of 93% ± 6. This compared favorably to the cross-validation analysis of a Polish-trained model, which had an AUROC of 94% ± 5, suggesting that answers to the QCHAT-10 can be predictive of an official autism diagnosis, even across cultures. The New Zealand model with four features had an AUROC of 85% ± 13, and the Saudi model had a similar result of 87% ± 11. These results were somewhat lower than the Polish cross-validation AUROC of 91% ± 5. Adjusting probability thresholds improved sensitivity in some models, which is crucial for screening tools. However, this threshold adjustment often resulted in low levels of specificity during the final testing phase. Our findings suggest that these screening tools may generalize well across cultures; however, more research is needed regarding differences in feature importance for different populations.  more » « less
Award ID(s):
2014232
PAR ID:
10568757
Author(s) / Creator(s):
; ;
Publisher / Repository:
medRxiv
Date Published:
Format(s):
Medium: X
Institution:
medRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and Objectives: Sepsis is a leading cause of mortality in intensive care units (ICUs). The development of a robust prognostic model utilizing patients’ clinical data could significantly enhance clinicians’ ability to make informed treatment decisions, potentially improving outcomes for septic patients. This study aims to create a novel machine-learning framework for constructing prognostic tools capable of predicting patient survival or mortality outcome. Methods: A novel dataset is created using concatenated triples of static data, temporal data, and clinical outcomes to expand data size. This structured input trains five machine learning classifiers (KNN, Logistic Regression, SVM, RF, and XGBoost) with advanced feature engineering. Models are evaluated on an independent cohort using AUROC and a new metric, 𝛾, which incorporates the F1 score, to assess discriminative power and generalizability. Results: We developed five prognostic models using the concatenated triple dataset with 10 dynamic features from patient medical records. Our analysis shows that the Extreme Gradient Boosting (XGBoost) model (AUROC = 0.777, F1 score = 0.694) and the Random Forest (RF) model (AUROC = 0.769, F1 score = 0.647), when paired with an ensemble under-sampling strategy, outperform other models. The RF model improves AUROC by 6.66% and reduces overfitting by 54.96%, while the XGBoost model shows a 0.52% increase in AUROC and a 77.72% reduction in overfitting. These results highlight our framework’s ability to enhance predictive accuracy and generalizability, particularly in sepsis prognosis. Conclusion: This study presents a novel modeling framework for predicting treatment outcomes in septic patients, designed for small, imbalanced, and high-dimensional datasets. By using temporal feature encoding, advanced sampling, and dimension reduction techniques, our approach enhances standard classifier performance. The resulting models show improved accuracy with limited data, offering valuable prognostic tools for sepsis management. This framework demonstrates the potential of machine learning in small medical datasets. 
    more » « less
  2. Abstract Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area. 
    more » « less
  3. Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better. 
    more » « less
  4. Recent advances in machine learning (ML) identifying areas favorable to hydrothermal systems indicate that the resolution of feature data remains a subject of necessary improvement before ML can reliably produce better models. Herein, we consider the value of adding new features or replacing other, low-value features with new input features in existing ML pipelines. Our previous work identified stress and seismicity as having less value than the other feature types (i.e., heat flow, distance to faults, and distance to magmatic activity) for the 2008 USGS hydrothermal energy assessment; hence, a fundamental question regards if the addition of new but partially correlated features will improve resulting models for hydrothermal favorability. Therefore, we add new maps for shear strain rate and dilation strain rate to fit logistic regression and XGBoost models, resulting in new 7-feature models that are compared to the old 5-feature models. Because these new features share a degree of correlation with the original relatively uninformative stress and seismicity features, we also consider replacement of the two lower-value features with the two new features, creating new 5-feature models. Adding the new features improves the predictive skill of the new 7-feature model over that of the old 5-feature model; albeit, that improvement is not statistically significant because the new features are correlated with the old features and, consequently, the new features do not present considerable new information. However, the new 5-feature XGBoost model has a statistically significant increase in predictive skill for known positives over the old 5-feature model at p = 0.06. This improved performance is due to the lower-dimensional feature space of the former than that of the latter. In higher-dimensional feature space, relationships between features and the presence or absence of hydrothermal systems are harder to discern (i.e., the 7-feature model likely suffers from the “curse of dimensionality”). 
    more » « less
  5. Importance Autism detection early in childhood is critical to ensure that autistic children and their families have access to early behavioral support. Early correlates of autism documented in electronic health records (EHRs) during routine care could allow passive, predictive model-based monitoring to improve the accuracy of early detection. Objective To quantify the predictive value of early autism detection models based on EHR data collected before age 1 year. Design, Setting, and Participants This retrospective diagnostic study used EHR data from children seen within the Duke University Health System before age 30 days between January 2006 and December 2020. These data were used to train and evaluate L2-regularized Cox proportional hazards models predicting later autism diagnosis based on data collected from birth up to the time of prediction (ages 30-360 days). Statistical analyses were performed between August 1, 2020, and April 1, 2022. Main Outcomes and Measures Prediction performance was quantified in terms of sensitivity, specificity, and positive predictive value (PPV) at clinically relevant model operating thresholds. Results Data from 45 080 children, including 924 (1.5%) meeting autism criteria, were included in this study. Model-based autism detection at age 30 days achieved 45.5% sensitivity and 23.0% PPV at 90.0% specificity. Detection by age 360 days achieved 59.8% sensitivity and 17.6% PPV at 81.5% specificity and 38.8% sensitivity and 31.0% PPV at 94.3% specificity. Conclusions and Relevance In this diagnostic study of an autism screening test, EHR-based autism detection achieved clinically meaningful accuracy by age 30 days, improving by age 1 year. This automated approach could be integrated with caregiver surveys to improve the accuracy of early autism screening. 
    more » « less