skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantification of electron correlation for approximate quantum calculations
State-of-the-art many-body wave function techniques rely on heuristics to achieve high accuracy at an attainable computational cost to solve the many-body Schrödinger equation. By far, the most common property used to assess accuracy has been the total energy; however, total energies do not give a complete picture of electron correlation. In this work, we assess the von Neumann entropy of the one-particle reduced density matrix (1-RDM) to compare selected configuration interaction (CI), coupled cluster, variational Monte Carlo, and fixed-node diffusion Monte Carlo for benchmark hydrogen chains. A new algorithm, the circle reject method, is presented, which improves the efficiency of evaluating the von Neumann entropy using quantum Monte Carlo by several orders of magnitude. The von Neumann entropy of the 1-RDM and the eigenvalues of the 1-RDM are shown to distinguish between the dynamic correlation introduced by the Jastrow and the static correlation introduced by determinants with large weights, confirming some of the lore in the field concerning the difference between the selected CI and Slater–Jastrow wave functions.  more » « less
Award ID(s):
1931258
PAR ID:
10440032
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the connection between von Neumann algebra index and relative entropy. We observe that the Pimsner-Popa index connects to maximal sandwiched p-R\'enyi relative entropy for all p between 1/2 and infinity, including the Umegaki's relative entropy at p=1. Based on that, we introduce a new notation of maximal relative entropy for a inclusion of finite von Neumann algebras. These maximal relative entropy generalizes subfactors index and has application in estimating decoherence time of quantum Markov semigroup 
    more » « less
  2. Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states. 
    more » « less
  3. We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions. 
    more » « less
  4. In a recent paper (JCTC, 16, 6098 (2020)), we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces, called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space. By folding correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse, creating a more compact selected CI expansion. While we demonstrated that this approach can improve accuracy for a variety of systems, there is even greater potential for applications to excited states, particularly those which have some excitonic character. In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate excitation energies for several excited states of various polycyclic aromatic hydrocarbons (PAH) with respect to the extrapolated result (i.e. near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 biexcitonic states. 
    more » « less
  5. null (Ed.)
    A bstract An alternative method is presented for extracting the von Neumann entropy − Tr( ρ ln ρ ) from Tr( ρ n ) for integer n in a quantum system with density matrix ρ . Instead of relying on direct analytic continuation in n , the method uses a generating function − Tr{ ρ ln[(1 − zρ )/(1 − z )]} of an auxiliary complex variable z . The generating function has a Taylor series that is absolutely convergent within |z| < 1, and may be analytically continued in z to z = −∞ where it gives the von Neumann entropy. As an example, we use the method to calculate analytically the CFT entanglement entropy of two intervals in the small cross ratio limit, reproducing a result that Calabrese et al. obtained by direct analytic continuation in n . Further examples are provided by numerical calculations of the entanglement entropy of two intervals for general cross ratios, and of one interval at finite temperature and finite interval length. 
    more » « less