skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: A Real-time Machine Learning-based GPS Spoofing Solution for Location-dependent UAV Applications
In this paper, a three-class machine learning (ML) model is implemented on an unmanned aerial vehicle (UAV) with a Raspberry Pi processor for classifying two global positioning system (GPS) spoofing attacks (i.e., static, dynamic) in real-time. First, several models are developed and tested utilizing a dataset collected in a previous work. This dataset conveys GPS-specific features, including location information. Models evaluations are carried out using the detection rate, F-score, false alarm rate, and misdetection rate, which all showed an acceptable performance. Then, the optimum model is loaded to the processor and tested for real-time detection and classification. Location-dependent applications, such as fixed-route public transportations are expected to benefit from the methodology presented herein as the longitude, latitude, and altitude features are characterized in the developed model.  more » « less
Award ID(s):
2006674
PAR ID:
10440044
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Electro Information Technology
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less
  2. In this article, real-time jamming detection against unmanned aerial vehicles (UAVs) is proposed via the integration of a software-defined radio (SDR) with an on-board Raspberry Pi processor. The SDR is utilized for capturing and forwarding the radio frequency signals to a receiver module hosted in the processor. This module extracts signal features characterized by orthogonal frequency division multiplexing (OFDM) parameters, energy parameters, and signal-to-noise ratio (SNR) parameters. Upon feature extraction, the aforementioned module exploits a machine learning (ML) classifier for detecting and classifying four jamming types; namely, barrage, single-tone, successive-pulse, and protocol-aware. The resulting configuration yielded in an overall detection rate (DR) of 93% and a false alarm rate (FAR) of 1.1%, which are in proximity to their counterparts obtained during the validation stage of the receiver module. 
    more » « less
  3. GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions. 
    more » « less
  4. GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions. 
    more » « less
  5. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras. 
    more » « less