skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bacterial communities of hookah tobacco products are diverse and differ across brands and flavors
Abstract Young adults are increasingly using non-cigarette products, such as hookahs, since they are perceived as healthier alternatives to cigarette smoking. However, hookah users are exposed to not only carcinogenic compounds but also microorganisms that may play an active role in the development of both infectious and chronic diseases among users. Nevertheless, existing hookah research in this area has focused only on microorganisms that may be transferred to users through the smoking apparatus and not on bacterial communities associated with hookah tobacco. To address this knowledge gap, we conducted time-series experiments on commercially available hookah brands (Al Fakher (flavors: two apple, mint, and watermelon) and Fumari (flavors: white gummy bear, ambrosia, and mint chocolate chill)) stored under three different temperature and relative humidity conditions over 14 days. To characterize bacterial communities, the total DNA was extracted on days 0, 5, 9, and 14, PCR-amplified for the V3V4 region of the bacterial 16S rRNA gene, sequenced on the Illumina HiSeq platform, and analyzed using R. Diversity (alpha and beta) analyses revealed that the microbiotas of Fumari and Al Fakher products differed significantly and that flavor had a significant effect on the hookah microbiota. Overall, Pseudomonas , Bacillus , Sphingomonas , and Methylobacterium were the predominant bacterial taxa across all products . Additionally, we observed compositional differences between hookah brands across the 14-day incubation . These data suggest that the bacterial communities of hookah tobacco are diverse and differ across brands and flavors, which may have critical implications regarding exposures to specific bacteria among hookah users. Key points • Commercial hookah products harbor diverse bacterial communities . • Brands and flavors impact the diversity of these communities . • Research on their viability and transmission to users’ respiratory tracts is needed . Graphical abstract  more » « less
Award ID(s):
1828910
PAR ID:
10440111
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Microbiology and Biotechnology
Volume:
106
Issue:
17
ISSN:
0175-7598
Page Range / eLocation ID:
5785 to 5795
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3–V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance ofFirmicutesand a lower relative abundance ofProteobacteria, when compared to non-users. Non-users had a higher relative abundance ofActinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, andVeillonellain buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users includingNeisseria subflava, Bulleidia mooreiandPorphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users. 
    more » « less
  2. PurposeTo evaluate cardiovascular disease (CVD) risk factors among smokeless tobacco (ST) users. Exclusive ST users were compared to exclusive cigarette smokers and non-tobacco users. DesignCross-sectional study SampleData were used from 16,336 adult males who participated in one of the National Health and Nutrition Examination Surveys (NHANES) from 2003 to 2018. MeasuresBiochemically verified tobacco use, CVD risk factors (hypertension, cholesterol levels, BMI categories), physical activity, cotinine concentration, and sociodemographic variables. AnalysisWeighted analysis of the aggregate data was performed. ST users were compared with cigarette smokers and nontobacco users for their association with CVD risk factors. Associations were examined using univariate and multiple logistic regression with odds ratios (OR) and 95% confidence intervals (CI) reported. ResultsPrevalence of exclusive ST use was 4.4% whereas, exclusive smoking was 22.2%. Among ST users, 36.2% were hypertensive, 24.5% had high cholesterol levels, and most of them were overweight (31.1%) or obese (52.6%). ST users were more likely to have hypertension compared to smokers (aOR = 1.48, 95%CI: 1.12, 1.95) and nontobacco users (aOR = 1.41, 95%CI: 1.09, 1.83) adjusted for other covariates. ST users were twice more likely to be obese than nontobacco users (aOR = 2.18, 95%CI: 1.52, 3.11). ST users had significantly higher cotinine concentration than smokers. ConclusionStudy findings indicate substantial association of ST use among males with hypertension and obesity which are independent risk factors of CVD. 
    more » « less
  3. Abstract Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change. 
    more » « less
  4. Abstract Although electronic cigarette (e-cigarette) aerosol contains similar toxicants to combustible cigarettes, few studies have examined their influence on fecundability. We assessed the association between e-cigarette use and fecundability, overall and according to combustible cigarette smoking history, in a cohort of 4,586 North American women (aged 21–45 years) enrolled during 2017–2020 in Pregnancy Study Online, a Web-based prospective preconception study. Women reported current and former e-cigarette use on baseline and follow-up questionnaires, and they completed bimonthly follow-up questionnaires until self-reported pregnancy or censoring. Fecundability ratios and 95% confidence intervals were calculated using proportional probabilities models, controlling for potential confounders. Overall, 17% of women had ever used e-cigarettes and 4% were current users. Compared with never use of e-cigarettes, current e-cigarette use was associated with slightly lower fecundability (fecundability ratio = 0.84, 95% confidence interval (CI): 0.67, 1.06). Compared with current nonusers of e-cigarettes and combustible cigarettes, fecundability ratios were 0.83 (95% CI: 0.54, 1.29) for current dual users of e-cigarettes and combustible cigarettes, 0.91 (95% CI: 0.70, 1.18) for current e-cigarette users who were nonsmokers of combustible cigarettes, and 1.01 (95% CI: 0.85, 1.20) for nonusers of e-cigarettes who were current smokers of combustible cigarettes. Current e-cigarette use was associated with slightly reduced fecundability, but estimates of its independent and joint associations with combustible cigarette smoking were inconsistent and imprecise. 
    more » « less
  5. To illuminate understanding of how social media can be leveraged to glean insights into public health issues such as e-cigarette use, we use a social media analytics and research testbed (SMART) dashboard to observe Twitter messages and follow content about e-cigarettes in different cities across the U.S. Our case studies indicate that the majority of e-cigarette tweets are positive (68%), which represents a potential problem for public health. Stigma plays the most important roles in both confirmed and rejected messages for e-cigarettes. We also noticed that some advocates of ecigarettes might be hybrid human-bot accounts (or multiple users using one account). Our key findings demonstrate the use of the SMART dashboard as a means of public healthrelated belief surveillance, and identification of campaign targets and informational needs of different communities in real-time. Future uses of this tool include monitoring social messages about e-cigarettes for combating the spread of tobacco-related misinformation and disinformation, and detecting and targeting informational needs of communities for intervention. 
    more » « less