skip to main content


Title: Spectroscopy-based smart optical monitoring system in the applications of laser additive manufacturing

The potential defects during the additive manufacturing (AM) process greatly deteriorate the mechanical properties of the fabricated structures and, as a result, increase the risks of part fatigue failure and even disasters. As laser additive manufacturing is such a complex process, many different physical phenomena such as electromagnetic radiation, optical and acoustic emission, and plasma generation will occur. Unlike vision and acoustic methods, the spectroscopy based smart optical monitoring system (SOMS) provides atomic level information revealing mechanical and chemical condition of the product. By monitoring plasma, multiple information such as line intensity, standard deviation, plasma temperature, or electron density, and by using different signal processing algorithms such as vector machine training or wavelet transforming, AM defects have been detected and classified. Utilizing two fiber optic components, a bifurcated fiber and a split fiber, the experimental results were performed to improve SOMS signal-to-noise ratio. Defects, including subsurface pores and sudden changes of process parameters including shielding gas shut-off and foreign substance, were identified by the spectroscopy based SOMS. For chemical composition characterization, a degree of dilution in terms of chemical element variation is identified by a spectral peak intensity ratio through the SOMS. It turned out that the information on the Cr/Fe ratio of deposit at a certain layer is vital to design the mechanical property in the IN625 deposition on the mild steel case. The SOMS has also demonstrated that the chemistry ratio can be determined from the calibration curve method based on the known alloy samples and that the ratio of the maximum intensities of multiple species provides more information about the quality of the alloy.

 
more » « less
NSF-PAR ID:
10440221
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.2351
Date Published:
Journal Name:
Journal of Laser Applications
Volume:
35
Issue:
1
ISSN:
1042-346X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this work to mitigate flaws in metal parts produced from laser powder bed fusion (LPBF) additive manufacturing (AM) process. As a step towards this goal, the objective of this work is to predict the build quality of a part as it is being printed via deep learning of in-situ layer-wise images obtained from an optical camera instrumented in the LPBF machine. To realize this objective, we designed a set of thin-wall features (fins) from Titanium alloy (Ti-6Al-4V) material with varying length-to-thickness ratio. These thin-wall test parts were printed under three different build orientations and in-situ images of their top surface were acquired during the process. The parts were examined offline using X-ray computed tomography (XCT), and their build quality was quantified in terms of statistical features, such as the thickness and consistency of its edges. Subsequently, a deep learning convolutional neural network (CNN) was trained to predict the XCT-derived statistical quality features using the layer-wise optical images of the thin-wall part as inputs. The statistical correlation between CNN-based predictions and XCT-observed quality measurements exceeds 85%. This work has two outcomes consequential to the sustainability of additive manufacturing: (1) It provides practitioners with a guideline for building thin-wall features with minimal defects, and (2) the high correlation between the offline XCT measurements and in-situ sensor-based quality metrics substantiates the potential for applying deep learning approaches for the real-time prediction of build flaws in LPBF. 
    more » « less
  2. Abstract

    Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes.

     
    more » « less
  3. This study presents an overview and a few case studies to explicate the transformative power of diverse imaging techniques for smart manufacturing, focusing largely on variousin-situandex-situimaging methods for monitoring fusion-based metal additive manufacturing (AM) processes such as directed energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM).In-situimaging techniques, encompassing high-speed cameras, thermal cameras, and digital cameras, are becoming increasingly affordable, complementary, and are emerging as vital for real-time monitoring, enabling continuous assessment of build quality. For example, high-speed cameras capture dynamic laser-material interaction, swiftly detecting defects, while thermal cameras identify thermal distribution of the melt pool and potential anomalies. The data gathered fromin-situimaging are then utilized to extract pertinent features that facilitate effective control of process parameters, thereby optimizing the AM processes and minimizing defects. On the other hand,ex-situimaging techniques play a critical role in comprehensive component analysis. Scanning electron microscopy (SEM), optical microscopy, and 3D-profilometry enable detailed characterization of microstructural features, surface roughness, porosity, and dimensional accuracy. Employing a battery of Artificial Intelligence (AI) algorithms, information from diverse imaging and other multi-modal data sources can be fused, and thereby achieve a more comprehensive understanding of a manufacturing process. This integration enables informed decision-making for process optimization and quality assurance, as AI algorithms analyze the combined data to extract relevant insights and patterns. Ultimately, the power of imaging in additive manufacturing lies in its ability to deliver real-time monitoring, precise control, and comprehensive analysis, empowering manufacturers to achieve supreme levels of precision, reliability, and productivity in the production of components.

     
    more » « less
  4. Enhancing battery energy storage capability and reducing the cost per average energy capacity is urgent to satisfy the increasing energy demand in modern society. The lithium-sulfur (Li-S) battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1), low cost, and low toxicity.1 Despite these advantages, the practical utilization of lithium-sulfur (Li-S) batteries to date has been hindered by a series of obstacles, including low active material loading, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the Li-S battery.3 However, the longer diffusion length of lithium ions, which resulted in high tortuosity in the compact stacking thick electrode, decreases the penetration ability of the electrolyte into the entire cathode.4 Although an effort to induce catalysts in the cathode was made to promote sulfur conversion kinetic conditions, catalysts based on transition metals suffered from the low electronic conductivity, and some elements (i.e.: Co, Mn) may even absorb and restrict polysulfides for further reaction. 5 To mitigate the issues listed above, herein we propose a novel sulfur cathode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD). 6,7 Specifically, the cathode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in an N2 atmosphere in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. The intrinsic carbon defects are expected to create favorable sulfur conversion conditions with sufficient electronic conductivity. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects. Identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also on the inner surface of the microchannels. High-resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified samples demonstrate that a high concentration of the defects has been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with an elevated sulfur utilization ratio, accelerated reaction kinetics and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. References: 1 Chen, Y. Adv Mater 33, e2003666. 2 Bhargav, A. Joule 4, 285-291. 3 Liu, S. Nano Energy 63, 103894. 4 Chu, T. Carbon Energy 3. 5 Li, Y. Matter 4, 1142-1188. 6 John P. Lock. Macromolecules 39, 4 (2006). 7 Zekoll, S. Energy & Environmental Science 11, 185-201. 
    more » « less
  5. Composites printed using material extrusion additive manufacturing (AM) typically exhibit alignment of high- aspect-ratio reinforcements parallel to the print direction. This alignment leads to highly anisotropic stiffness, strength, and transport properties. In many cases, it would be desirable to increase mechanical and transport properties transverse to the print direction, for example, in 3D-printed heat sinks or heat exchangers where heat must be moved efficiently between printed roads or layers. Rotational direct ink writing (RDIW), where the deposition nozzle simultaneously rotates and translates during deposition, provides a method to reorient fibers transverse to the print direction during the printing process. In the present work, carbon fiber-reinforced epoxy composites were printed by RDIW with a range of nozzle rotation rates and the in-plane and through-thickness thermal conductivity was measured. In addition, the orientation of carbon fiber (CF) in the composites was measured using optical microscopy and image analysis, from which second-order fiber orientation tensors were calculated. These results showed that the orientation of CF became less anisotropic as nozzle rotation rate increased, leading to increased through-thickness thermal conductivity, which increased by 40% at the highest rotation rate. The orientation tensors also showed that RDIW was more effective at reorienting fibers within the in-plane transverse direction compared to the through-thickness transverse direction. The results presented here demonstrate that a current weakness of material extrusion AM composites—poor thermal conductivity in the through-thickness direction—can be significantly improved with RDIW. 
    more » « less