skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphology of shocked lateral outflows in colliding hydrodynamic flows
Supersonic interacting flows occurring in phenomena, such as protostellar jets, give rise to strong shocks and have been demonstrated in several laboratory experiments. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in three dimensions. We introduce variations in the flow parameters of density, velocity, and cross-sectional radius of the colliding flows in order to study the propagation and conical shape of the bow shock formed by collisions between two, not necessarily symmetric, hypersonic flows. We find that the motion of the interaction region is driven by imbalances in ram pressure between the two flows, while the conical structure of the bow shock is a result of shocked lateral outflows being deflected from the horizontal when the flows are of differing cross sections.  more » « less
Award ID(s):
2020249
PAR ID:
10440268
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
10
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate three-dimensional (3-D) bow shocks in a highly collisional magnetized aluminium plasma, generated during the ablation phase of an exploding wire array on the MAGPIE facility (1.4 MA, 240 ns). Ablation of plasma from the wire array generates radially diverging, supersonic ( $$M_S \sim 7$$ ), super-Alfvénic ( $$M_A > 1$$ ) magnetized flows with frozen-in magnetic flux ( $$R_M \gg 1$$ ). These flows collide with an inductive probe placed in the flow, which serves both as the obstacle that generates the magnetized bow shock, and as a diagnostic of the advected magnetic field. Laser interferometry along two orthogonal lines of sight is used to measure the line-integrated electron density. A detached bow shock forms ahead of the probe, with a larger opening angle in the plane parallel to the magnetic field than in the plane normal to it. Since the resistive diffusion length of the plasma is comparable to the probe size, the magnetic field decouples from the ion fluid at the shock front and generates a hydrodynamic shock, whose structure is determined by the sonic Mach number, rather than the magnetosonic Mach number of the flow. The 3-D simulations performed using the resistive magnetohydrodynamic (MHD) code Gorgon confirm this picture, but under-predict the anisotropy observed in the shape of the experimental bow shock, suggesting that non-MHD mechanisms may be important for modifying the shock structure. 
    more » « less
  2. Abstract Foreshock transients such as foreshock bubbles (FBs), hot flow anomalies (HFAs), and spontaneous hot flow anomalies (SHFAs) display heated, tenuous cores and large flow deflections bounded by compressional boundaries. THEMIS and Cluster observations show that some cores contain local density enhancements which can be studied to better understand the evolution processes of foreshock transients. However, closer examinations of these substructures were not feasible until the availability of the higher resolution data from the Magnetospheric Multiscale mission (MMS). We identify 164 FB‐like, HFA‐like, and SHFA events from two MMS dayside phases for a statistical study to investigate their solar wind conditions, properties, and substructure properties. Occurrence rates of the three event types are higher for lower magnetic field strengths, higher solar wind speeds and Mach numbers, and quasi‐parallel bow shocks. Events usually span up to 3REalong the bow shock surface and extend up to 6REupstream from the bow shock. Though events with and without substructures exhibit similar solar wind conditions, events with substructures are more likely to have longer core durations and larger sizes. Substructure densities display a positive correlation with bulk flows and a negative correlation with temperatures. Substructure sizes vary between 4 and 24 ion inertial lengths, indicating multiple formation mechanisms. Substructures could be the boundary between two foreshock transient events that have merged into a single event, fast‐mode variations, generated by slow or mirror mode instabilities, or produced from instabilities due to parameter gradients at the compressional boundaries or shocks. 
    more » « less
  3. On the bow shock in front of Earth’s magnetosphere flows a current due to the curl of the interplanetary magnetic field across the shock. The closure of this current remains uncertain; it is unknown whether the bow shock current closes with the Chapman-Ferraro current system on the magnetopause, along magnetic field lines into the ionosphere, through the magnetosheath, or some combination thereof. We present simultaneous observations from Magnetosphere Multiscale (MMS), AMPERE, and Defense Meteorological Satellite Program (DMSP) during a period of strong B y , weakly negative B z , and very small B x . This IMF orientation should lead to a bow shock current flowing mostly south to north on the shock. AMPERE shows a current poleward of the Region 1 and Region 2 Birkeland currents flowing into the northern polar cap and out of the south, the correct polarity for bow shock current to be closing along open field lines. A southern Defense Meteorological Satellite Program F18 flyover confirms that this current is poleward of the convection reversal boundary. Additionally, we investigate the bow shock current closure for the above-mentioned solar wind conditions using an MHD simulation of the event. We compare the magnitude of the modeled bow shock current due to the IMF B y component to the magnitude of the modeled high-latitude current that corresponds to the real current observed in AMPERE and by Defense Meteorological Satellite Program. In the simulation, the current poleward of the Region 1 currents is about 37% as large as the bow shock I z in the northern ionosphere and 60% in the south. We conclude that the evidence points to at least a partial closure of the bow shock current through the ionosphere. 
    more » « less
  4. Abstract Foreshock transients such as hot flow anomalies (HFAs) are frequently observed in the dayside foreshock. They can disturb the local bow shock, magnetopause, and consequently the magnetosphere‐ionosphere system through dynamic pressure perturbations. Recent multipoint observations found that such perturbations can even propagate from the dayside to the midtail. However, whether the drivers of such perturbations, foreshock transients, persist in the midtail foreshock has not been observed. Thus, it is unclear whether the observed nightside magnetosheath/magnetopause perturbations are traveling waves or continuously driven by a propagating foreshock transient. Using two Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft, we report direct observational evidence of foreshock transients in the midtail foreshock. We present a case study showing an elongated mature HFA propagating with its driver discontinuity from TH‐C (X ~ −43 RE) to TH‐B (X ~ −48 RE). Our results confirm that foreshock transients disturb not only the dayside bow shock but also the nightside bow shock while propagating tailward. 
    more » « less
  5. Abstract This work identifies and characterizes magnetic structures, especially in terms of small‐scale magnetic flux ropes (SFRs), in the solar wind and magnetosheath across the Earth's bow shock. We investigate the differences between the properties of SFR structures in these regions immediately upstream and downstream of the bow shock by employing two data analysis methods: one based on wavelet transforms and the other based on the Grad‐Shafranov (GS) detection and reconstruction techniques. In situ magnetic field and plasma data from the Magnetospheric Multiscale and Time History of Events and Macroscale Interactions during Substorms missions are used to identify these coherent structures through the two approaches. We identify thousands of SFR event intervals with a range of variable duration over a total time period of 1,000 hr in each region. We report parameters associated with the SFRs such as scale size, duration, magnetic flux content, and magnetic helicity density, derived from primarily the GS‐based analysis results. These parameters are summarized through statistical analysis, and their changes across the bow shock are shown based on comparisons of their respective distributions. We find that in general, the distributions of various parameters follow power laws. The SFR structures seem to be compressed in the magnetosheath, as compared with their counterparts in the solar wind. A significant rotation in the ‐axis defining the orientation of the structures is also seen across the bow shock. We also discuss the implications for the elongation of the SFRs in the magnetosheath along one spatial dimension. 
    more » « less