skip to main content


Title: Influence of plasma species on the early-stage growth kinetics of epitaxial InN grown by plasma-enhanced atomic layer deposition

Plasma-enhanced atomic layer deposition (PEALD) enables the epitaxial growth of ultrathin indium nitride (InN) films at significantly reduced process temperatures and with greater control of layer thickness compared to other growth methods. However, the reliance on plasma-surface interactions increases the complexity of the growth process. A detailed understanding of the relationship between the plasma properties and the growth kinetics is therefore required to guide the tuning of growth parameters. We present an in situ investigation of the early-stage PEALD growth kinetics of epitaxial InN within three different plasma regimes using grazing incidence small-angle x-ray scattering (GISAXS). The GISAXS data are supported by diagnostic studies of the plasma species generation in the inductively coupled plasma source as a function of the relative concentrations of the nitrogen/argon gas mixture used in the growth process. The growth mode is found to be correlated to the production of nitrogen species in the plasma, with high concentrations of the atomic N species promoting Volmer–Weber growth (i.e., island growth) and low concentrations promoting Stranski–Krastanov growth (i.e., layer-plus-island growth). The critical thickness for island formation, island center-to-center distance, and island radius are found to increase with ion flux. Furthermore, the island center-to-center distance and areal density are observed to change only during plasma exposure and to continue changing with exposure even after the methylindium adlayer is believed to have fully reacted with the plasma. Our results demonstrate the potential to control the growth kinetics during PEALD of epitaxial films by intentionally accessing specific regimes of plasma species generation.

 
more » « less
NSF-PAR ID:
10440280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
40
Issue:
6
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cubic boron nitride (c-BN), with a small 1.4% lattice mismatch with diamond, presents a heterostructure with multiple opportunities for electronic device applications. However, the formation of c-BN/diamond heterostructures has been limited by the tendency to form hexagonal BN at the interface. In this study, c-BN has been deposited on free standing polycrystalline and single crystal boron-doped diamond substrates via electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD), employing fluorine chemistry. In situ x-ray photoelectron spectroscopy (XPS) is used to characterize the nucleation and growth of boron nitride (BN) films as a function of hydrogen gas flow rates during deposition. The PECVD growth rate of BN was found to increase with increased hydrogen gas flow. In the absence of hydrogen gas flow, the BN layer was reduced in thickness or etched. The XPS results show that an excess of hydrogen gas significantly increases the percent of sp2 bonding, characteristic of hexagonal BN (h-BN), particularly during initial layer growth. Reducing the hydrogen flow, such that hydrogen gas is the limiting reactant, minimizes the sp2 bonding during the nucleation of BN. TEM results indicate the partial coverage of the diamond with thin epitaxial islands of c-BN. The limited hydrogen reaction is found to be a favorable growth environment for c-BN on boron-doped diamond.

     
    more » « less
  2. Microwave loss in superconducting TiN films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications, or the etch rate lacks the desired control. Furthermore, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6/H2 plasma. For certain ratios of SF6:H2 flow rates, we observe selective etching of TiO2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 Å/cycle at 150°C to 3.2 Å/cycle at 350°C using ex situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits. 
    more » « less
  3. In this work, we present the investigation of InN/GaN multiple-quantum-well (MQW) growth by plasma-assisted molecular beam epitaxy using in-situ reflection high-energy electron diffraction (RHEED) to monitorthe growth process. The analysis of the RHEED intensity and pattern transitions identified an indium surface ac-cumulation even with a nominal thickness of InN as small as 0.5 monolayer (ML). This result explicitly showsthat, even at low growth temperaturesof ~550 °C, not all of the supplied indium isincorporated into the quantumwell (QW). Moreover, the residual indium can become incorporated into the GaN matrix on either side of theQW. Both QW thickness and the photoluminescence (PL) emission energy showed a self-regulating behavior.The apparent thickness did not exceed 2 MLs even when the deposited InN thickness is as large as 5 MLs. ThePL emission shows a continuous redshift with the deposited InN from ~370 nm for 0.5 ML until it saturates at~423 nm forN2 ML. Based on the observed growth phenomena, a qualitative growth model was developed to ex-plain the self-limited epitaxial growth of ultrathin In(Ga)N/GaN QWs 
    more » « less
  4. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  5. Nucleation is important in processing of good quality diamond crystals and textured thin films by microwave plasma enhanced chemical vapor deposition (MPECVD) for applications in quantum devices and systems. Bias-enhanced nucleation (BEN) is one approach for diamond nucleation in situ during MPECVD. However, the mechanism of diamond nucleation by BEN is not well understood. This paper describes results on the nucleation of diamond within a carbon film upon application of electric field during the BEN-facilitated MPECVD process. The nature of the diamond film and nuclei formed is characterized by SEM (scanning electron microscopy), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The HRTEM images and associated diffraction patterns of the nucleation layer show that the diamond nuclei are formed within the carbon film close to the Si (100) substrate surface under the influence of microwaves and electric fields that lead to formation of the textured diamond film and crystal upon further growth. These results are expected to develop diamond films of optimum quality containing a nitrogen-vacancy center for application in quantum systems. 
    more » « less