We revisit the implementation of a two-qubit entangling gate, the Mølmer-Sørensen gate, using the adiabatic Rydberg dressing paradigm. We study the implementation of rapid adiabatic passage using a two-photon transition, which does not require the use of an ultra-violet laser, and can be implemented using only amplitude modulation of one field with all laser frequencies fixed. We find that entangling gate fidelities, comparable to the one-photon excitation, are achievable with the two-photon excitation. Moreover, we address how the adiabatic dressing protocol can be used to implement entangling gates outside the regime of a perfect Rydberg blockade. We show that using adiabatic dressing we can achieve a scaling of gate fidelity set by the fundamental limits to entanglement generated by the Rydberg interactions while simultaneously retaining limited population in the doubly excited Rydberg state. This allows for fast high fidelity gates for atoms separated beyond the blockade radius.
more »
« less
Analytical gradients and derivative couplings for the TDDFT-1D method
We derive and implement analytic gradients and derivative couplings for time-dependent density functional theory plus one double (TDDFT-1D) which is a semiempirical configuration interaction method whereby the Hamiltonian is diagonalized in a basis of all singly excited configurations and one doubly excited configuration as constructed from a set of reference Kohn–Sham orbitals. We validate the implementation by comparing against finite difference values. Furthermore, we show that our implementation can locate both optimized geometries and minimum-energy crossing points along conical seams of S1/S0 surfaces for a set of test cases.
more »
« less
- Award ID(s):
- 2102071
- PAR ID:
- 10440287
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 24
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear–electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing. A strategy is presented for calculating time-resolved vibrational and electronic absorption spectra from any initial condition. Although this strategy is general for any TDCI implementation, utilizing the NEO framework allows for the explicit inclusion of quantized nuclei, as illustrated through the calculation of vibrationally hot spectra. Time-resolved spectra produced by either vibrational or electronic Rabi oscillations capture ground-state absorption, stimulated emission, and excited-state absorption between vibronic states. This methodology provides the foundation for fully ab initio simulations of multidimensional spectroscopic experiments.more » « less
-
A<sc>bstract</sc> Results are presented for a test of the compositeness of the heaviest charged lepton,τ, using data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC. The data were collected in 2016–2018 and correspond to an integrated luminosity of 138 fb−1. This analysis searches for tau lepton pair production in which one of the tau leptons is produced in an excited state and decays to a ground state tau lepton and a photon. The event selection consists of two isolated tau lepton decay candidates and a high-energy photon. The mass of the excited tau lepton is reconstructed using the missing transverse momentum in the event, assuming the momentum of the neutrinos from each tau lepton decay are aligned with the visible decay products. No excess of events above the standard model background prediction is observed. This null result is used to set lower bounds on the excited tau lepton mass. For a compositeness scale Λ equal to the excited tau lepton mass, excited tau leptons with masses below 4700 GeV are excluded at 95% confidence level; for Λ = 10 TeV this exclusion is set at 2800 GeV. This is the first experimental result covering this production and decay process in the excited tau mass range above 175 GeV.more » « less
-
null (Ed.)Many techniques were proposed for detecting software misconfigurations in cloud systems and for diagnosing unintended behavior caused by such misconfigurations. Detection and diagnosis are steps in the right direction: misconfigurations cause many costly failures and severe performance issues. But, we argue that continued focus on detection and diagnosis is symptomatic of a more serious problem: configuration design and implementation are not yet first-class software engineering endeavors in cloud systems. Little is known about how and why developers evolve configuration design and implementation, and the challenges that they face in doing so. This paper presents a source-code level study of the evolution of configuration design and implementation in cloud systems. Our goal is to understand the rationale and developer practices for revising initial configuration design/implementation decisions, especially in response to consequences of misconfigurations. To this end, we studied 1178 configuration-related commits from a 2.5 year version-control history of four large-scale, actively-maintained open-source cloud systems (HDFS, HBase, Spark, and Cassandra). We derive new insights into the software configuration engineering process. Our results motivate new techniques for proactively reducing misconfigurations by improving the configuration design and implementation process in cloud systems. We highlight a number of future research directions.more » « less
-
Exciplexes are excited-state complexes formed as a result of partial charge transfer from the donor to the acceptor species when one moiety of the donor–acceptor pair is electronically excited. The arene–amine exciplex formed between oligo-(p-phenylene) (OPP) and triethylamine (TEA) is of interest in the catalytic photoreduction of CO2 because it can compete with complete electron transfer to the OPP catalyst. Therefore, formation of the exciplex can hinder the generation of a radical anion OPP·− necessary for subsequent CO2 reduction. We report an implementation of a workflow automating quantum-chemistry calculations that generate and characterize an ensemble of structures to represent this exciplex state. We use FireWorks, Pymatgen, and Custodian Python packages for high-throughput ensemble generation. The workflow includes time-dependent density functional theory optimization, verification of excited-state minima, and exciplex characterization with natural transition orbitals, exciton analysis, excited-state Mulliken charges, and energy decomposition analysis. Fluorescence spectra computed for these ensembles using Boltzmann-weighted contributions of each structure agree better with experiment than our previous calculations based on a single representative exciplex structure [Kron et al., J. Phys. Chem. A 126, 2319–2329 (2022)]. The ensemble description of the exciplex state also reproduces an experimentally observed red shift of the emission spectrum of [OPP-4–TEA]* relative to [OPP-3–TEA]*. The workflow developed here streamlines otherwise labor-intensive calculations that would require significant user involvement and intervention.more » « less
An official website of the United States government
