Driven by the need for sustainable construction solutions, there is renewed interest in earth-based materials. Biopolymer stabilizers can enhance the rheological and structural properties of these materials to facilitate their use in 3D printing. This research examined the influence of sodium alginate on the stability, particle interaction, rheology, and 3D printability of kaolinite, a commonly found clay in soils deemed suitable for construction. Findings revealed that sodium alginate could boost electrostatic interactions to enhance the stability of kaolinite suspensions. This rise in repulsive potential energy could reduce storage modulus and yield stress by orders of magnitude. However, as the alginate content increased beyond its critical overlapping concentration (0.12 %–0.6 %), a reverse trend was observed, which was attributed to the formation of a three-dimensional polymer network. Furthermore, alginate addition shifted the “printability window” of kaolinite mixtures to higher solid contents, which has positive implications on the strength and shrinkage of the printable mixtures.
more »
« less
Understanding the rheology of kaolinite clay suspensions using Bayesian inference
Mud is a suspension of fine-grained particles (sand, silt, and clay) in water. The interaction of clay minerals in mud gives rise to complex rheological behaviors, such as yield stress, thixotropy, and viscoelasticity. Here, we experimentally examine the flow behaviors of kaolinite clay suspensions, a model mud, using steady shear rheometry. The flow curves exhibit both yield stress and rheological hysteresis behaviors for various kaolinite volume fractions (ϕk). Further understanding of these behaviors requires fitting to existing constitutive models, which is challenging due to numerous fitting parameters. To this end, we employ a Bayesian inference method, Markov chain Monte Carlo, to fit the experimental flow curves to a microstructural viscoelastic model. The method allows us to estimate the rheological properties of the clay suspensions, such as viscosity, yield stress, and relaxation time scales. The comparison of the inherent relaxation time scales suggests that kaolinite clay suspensions are strongly viscoelastic and weakly thixotropic at relatively low ϕk, while being almost inelastic and purely thixotropic at high ϕk. Overall, our results provide a framework for predictive model fitting to elucidate the rheological behaviors of natural materials and other structured fluids.
more »
« less
- Award ID(s):
- 1720530
- PAR ID:
- 10440306
- Publisher / Repository:
- Society of Rheology
- Date Published:
- Journal Name:
- Journal of Rheology
- Volume:
- 67
- Issue:
- 1
- ISSN:
- 0148-6055
- Page Range / eLocation ID:
- p. 241-252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The remarkable increase in the flow resistance of dense suspensions can hinder 3D-printing processes on account of flow cessation in the extruder, and filament fragility/rupture following deposition. Understanding the nature of rheological changes that occur is critical to manipulate flow conditions or to dose flow modifiers for 3D-printing. Therefore, this paper elucidates the influences of clay particulates on controlling flow cessation and the shape stability of dense cementing suspensions that typically feature poor printability. A rope coiling method was implemented with varying stand-off distances to probe the buckling stability and tendency to fracture of dense suspensions that undergo stretching and bending during deposition. The contributions of flocculation and short-term percolation due to the kinetics of structure formation to deformation rate were deconvoluted using a stepped isostress method. It is shown that the shear stress indicates a divergence with a power-law scaling when the particle volume fraction approaches the jamming limit; ϕ → ϕ j ≈ ϕ max . Such a power-law divergence of the shear stress decreases by a factor of 10 with increasing clay dosage. Such behavior in clay-containing suspensions arises from a decrease in the relative packing fraction ( ϕ / ϕ max ) and the formation of fractally-architected aggregates with stronger interparticle interactions, whose uniform arrangement controls flow cessation in the extruder and suspension homogeneity, thereby imparting greater buckling stability. The outcomes offer new insights for assessing/improving the extrudability and printability behavior during slurry-based 3D-printing process.more » « less
-
There is no universal model for thixotropy, and comparing thixotropic effects between different fluids is a subtle yet challenging problem. We introduce a generalized (model-insensitive) framework for comparing thixotropic properties based on thixotropic spectra. A superposition of exponential stress modes distributed over thixotropic time scales is used to quantify buildup and breakdown times and mode strengths in response to step-change input. This mathematical framework is tested with several experimental step-shear rate data on colloidal suspensions. Low-dimensional metrics based on moments of the distribution reveal characteristic average thixotropic properties, which are visualized on Ashby-style diagrams. This method outlines a framework for describing thixotropy across a diverse range of microstructures, supporting scientific studies as well as material selection for engineering design applications.more » « less
-
SUMMARY Geodetic observations of post-seismic deformation due to afterslip and viscoelastic relaxation can be used to infer fault and lithosphere rheologies by combining the observations with mechanical models of post-seismic processes. However, estimating the spatial distributions of rheological parameters remains challenging because it requires solving a nonlinear inverse problem with a high-dimensional parameter space and potentially computationally expensive forward model. Here we introduce an inversion method to estimate spatially varying fault and lithospheric rheological parameters in a mechanical model of post-seismic deformation using geodetic time series. The forward model combines afterslip and viscoelastic relaxation governed by a velocity-strengthening frictional rheology and a power-law Burgers rheology, respectively, and incorporates the mechanical coupling between coseismic slip, afterslip and viscoelastic relaxation. The inversion method estimates spatially varying fault frictional parameters, viscoelastic constitutive parameters and coseismic stress change. We formulate the inverse problem in a Bayesian framework to quantify the uncertainties of the estimated parameters. To solve this problem with reasonable computational costs, we develop an algorithm to estimate the mean and covariance matrix of the posterior probability distribution based on an ensemble Kalman filter. We validate our method through numerical tests using a 2-D forward model and synthetic post-seismic GNSS time-series. The test results suggest that our method can estimate the spatially varying rheological parameters and their uncertainties reasonably well with tolerable computational costs. Our method can also recover spatially and temporally varying afterslip, viscous strain and effective viscosities and can distinguish the contributions of afterslip and viscoelastic relaxation to observed post-seismic deformation.more » « less
-
Abstract Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s−1due to suboptimal rheological properties of particulate‐dominated yield‐stress fluids when used as liquid baths. In this work, a particle‐hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high‐speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle‐hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high‐speed EIW method, an anatomic‐size human kidney construct is successfully printed at 110 mm s−1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future.more » « less
An official website of the United States government
