skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of homogeneous cavitation with pressure feedback
Theoretical studies of homogeneous cavitation have largely been based on the classical nucleation theory. However, existing cavitation models cannot adequately describe its dynamics at nanosecond timescale, which has been called for in other fields. We develop a model coupling nucleation kinetics with cavity growth and pressure feedback as saturation mechanisms. Our numerical studies reveal the exponential dependence of cavitation characteristics such as saturation cavity density and most probable cavity radius on model parameters: Tolman length and initial pressure. This work also sheds light on the possibility of accurately determining Tolman length, whose value has a large spread in the literature.  more » « less
Award ID(s):
2129409
PAR ID:
10440385
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Fluids
Volume:
34
Issue:
10
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cavitation has long been recognized as a crucial predictor, or precursor, to the ultimate failure of various materials, ranging from ductile metals to soft and biological materials. Traditionally, cavitation in solids is defined as an unstable expansion of a void or a defect within a material. The critical applied load needed to trigger this instability -- the critical pressure -- is a lengthscale independent material property and has been predicted by numerous theoretical studies for a breadth of constitutive models. While these studies usually assume that cavitation initiates from defects in the bulk of an otherwise homogeneous medium, an alternative and potentially more ubiquitous scenario can occur if the defects are found at interfaces between two distinct media within the body. Such interfaces are becoming increasingly common in modern materials with the use of multimaterial composites and layer-by-layer additive manufacturing methods. However, a criterion to determine the threshold for interfacial failure, in analogy to the bulk cavitation limit, has yet to be reported. In this work, we fill this gap. Our theoretical model captures a lengthscale independent limit for interfacial cavitation, and is shown to agree with our observations at two distinct lengthscales, via two different experimental systems. To further understand the competition between the two cavitation modes (bulk versus interface), we expand our investigation beyond the elastic response to understand the ensuing unstable propagation of delamination at the interface. A phase diagram summarizes these results, showing regimes in which interfacial failure becomes the dominant mechanism. 
    more » « less
  2. The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs. 
    more » « less
  3. An air-backed diaphragm is the key structure of most dynamic pressure sensors and plays a critical role in determining the sensor performance. Our previous analytical model investigated the influence of air cavity length on the sensitivity and bandwidth. The model found that as the cavity length decreases, the static sensitivity monotonically decreases, and the fundamental natural frequency shows a three-stage trend: increasing in the long-cavity-length range, reaching a plateau value in the medium-cavity-length range, and decreasing in the short-cavity-length range, which cannot be captured by the widely used lumped model. In this study, we conducted the first experimental measurements to validate these findings. Pressure sensors with a circular polyimide diaphragm and a backing air cavity with an adjustable length were designed, fabricated, and characterized, from which the static sensitivities and fundamental natural frequencies were obtained as a function of the cavity length. A further parametric study was conducted by changing the in-plane tension in the diaphragm. A finite element model was developed in COMSOL to investigate the effects of thermoviscous damping and provide validation for the experimental study. Along with the analytical model, this study provides a new understanding and important design guidelines for dynamic pressure sensors with air-backed diaphragms. 
    more » « less
  4. In the present study, the flow inside a real size Diesel fuel injector nozzle was modeled and analyzed under different boundary conditions using ANSYS-Fluent software. A validation was performed by comparing our numerical results with previous experimental data for a rectangular shape nozzle. Schnerr-Sauer cavitation model, which was selected for this study, was also validated. Two-equation k-ε turbulence model was selected since it had good agreement with experimental data. To reduce the computing time, due to symmetry of this nozzle, only one-sixth of this nozzle was modeled. Our present six-hole Diesel injector nozzle was modeled with different needle lifts including 30 μm, 100 μm and 250 μm. Effects of different needle lifts on mass flow rate, discharge coefficient and length of cavitation were evaluated comprehensively. Three different fuels including one Diesel fuel and two bio-Diesel fuels were also included in these numerical simulations. Behavior of these fuels was investigated for different needle lifts and pressure differences. For comparing the results, discharge coefficient, mass flow rate and length of cavitation region were compared under different boundary conditions and for several fuel types. The extreme temperature spike at the center of an imploding cavitation bubble was also analyzed as a function of time and initial bubble size. 
    more » « less
  5. Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant time scales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length and time scales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach −100 bar does cavitation occur on biologically relevant time scales. Our results suggest that bilayerbased cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers. 
    more » « less