skip to main content


Title: Physical and stoichiometric controls on stream respiration in a headwater stream
Abstract. Many studies in ecohydrology focusing on hydrologictransport argue that longer residence times across a stream ecosystem shouldconsistently result in higher biological uptake of carbon, nutrients, andoxygen. This consideration does not incorporate the potential forbiologically mediated reactions to be limited by stoichiometric imbalances.Based on the relevance and co-dependences between hydrologic exchange,stoichiometry, and biological uptake and acknowledging the limited amountof field studies available to determine their net effects on the retentionand export of resources, we quantified how microbial respiration iscontrolled by the interactions between and the supply of essential nutrients (C, N, and P)in a headwater stream in Colorado, USA. For this, we conducted two rounds ofnutrient experiments, each consisting of four sets of continuous injectionsof Cl− as a conservative tracer, resazurin as a proxy for aerobicrespiration, and one of the following nutrient treatments: (a) N, (b) N+C,(c) N+P, or (d) C+N+P. Nutrient treatments were considered to be knownsystem modifications that alter metabolism, and statistical tests helpedidentify the relationships between reach-scale hydrologic transport andrespiration metrics. We found that as discharge changed significantlybetween rounds and across stoichiometric treatments, (a) transient storagemainly occurred in pools lateral to the main channel and was proportional todischarge, and (b) microbial respiration remained similar between rounds andacross stoichiometric treatments. Our results contradict the notion thathydrologic transport alone is a dominant control on biogeochemicalprocessing and suggest that complex interactions between hydrology, resourcesupply, and biological community function are responsible for drivingin-stream respiration.  more » « less
Award ID(s):
1642399 1914490
NSF-PAR ID:
10440438
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
20
Issue:
15
ISSN:
1726-4189
Page Range / eLocation ID:
3353 to 3366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the past 30 plus years, the Arctic has warmed at a rate of 0.6°C per decade. This has resulted in considerable permafrost thaw and alterations of hydrological and biogeochemical processes. Coincident with these changes, recent studies document increases in annual fluxes of inorganic nutrients in larger Arctic rivers. Changing nutrient fluxes in Arctic rivers have been largely attributed to warming‐induced active layer expansion and newly exposed subsurface source areas. However, the ability of Arctic headwater streams to modulate inorganic nutrient patterns manifested in larger rivers remains unresolved. We evaluated environmental conditions, stream ecosystem metabolism, and nutrient uptake in three headwater streams of the Alaskan Arctic to quantify patterns of retention of inorganic nitrogen (N) and phosphorous (P). We observed elevated ambient nitrate‐N (NO3‐N) concentrations in late summer/early fall in two of three experimental stream reaches. We observed detectable increases in uptake as a result of nutrient addition in 88% of PO4‐P additions (n = 25), 38% of NH4‐N additions (n = 24), and 24% of NO3‐N additions (n = 25). We observed statistically significant relationships between NH4‐N uptake and ecosystem respiration, and PO4‐P uptake and gross primary productivity. Although these headwater streams demonstrate ability to control downstream transport of PO4‐P, we observed little evidence the same holds for dissolved inorganic N. Consequently, our results suggest that continued increases in terrestrial to aquatic N transfer in Arctic headwater landscapes are likely to be evident in larger Arctic rivers, in‐network lakes, and coastal environments.

     
    more » « less
  2. Abstract

    Decomposing organic matter forms a substantial resource base, fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic ecosystems relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment, regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by the initial P content, in which P‐poor litters were sinks for nutrients until these shifted to net P mineralization after ~40% mass loss. However, large variations surrounded both the N and P predictions, suggesting the importance of nonmicrobial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of the decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. The explorations of environmental covariate effects were frequently limited by a few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate the existing ontogenetic patterns in C:N. Our analysis helps to unite organic matter decomposition across aquatic–terrestrial boundaries by describing the basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda with which to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems.

     
    more » « less
  3. Abstract

    Agricultural activities can affect the delivery of nutrients to streams, riparian canopy cover, and the capacity of aquatic systems to process nutrients and sediments. There are few measures of nutrient uptake and metabolism from tropical or subtropical streams in general, and even fewer from tropical regions of South America. We examined ammonium (NH4+) and soluble reactive phosphorus (SRP) retention in streams in Brazil and Argentina. We selected 12 streams with relatively little or extensive agricultural activity and conducted whole‐stream nutrient additions and measurements of gross primary production and ecosystem respiration. We used multiple linear regression to determine potential drivers of nutrient uptake metrics across the streams. Nutrient concentrations and retention differed significantly between land use categories. Both NH4+and SRP concentrations were higher in the agricultural sites (means of 161 and 495 μg l–1, respectively), whereas metabolic rates were slower and transient storage was smaller. Our analysis indicated that agriculture increased ambient uptake lengths and decreased uptake velocities. The regression models revealed that ambient SRP had a positive effect on NH4+uptake and vice versa, suggesting strong stoichiometric controls. Drivers for nutrient uptake in streams with low‐intensity agriculture also included canopy cover, temperature, and ecosystem respiration rates. Nutrient assimilation in agricultural sites was influenced by a higher number of variables (gross primary production for SRP, discharge, and transient storage for both nutrients). Our results indicate agricultural activity changes both the magnitude of in‐stream nutrient uptake and the mechanisms that control its variation, with important implications for South American streams under agricultural intensification.

     
    more » « less
  4. Abstract

    In polar regions, where many glaciers are cold based (frozen to their beds), biological communities on the glacier surface can modulate and transform nutrients, controlling downstream delivery. However, it remains unclear whether supraglacial streams are nutrient sinks or sources and the rates of nutrient processing. In order to test this, we conducted tracer injections in three supraglacial streams (62 to 123 m long) on Canada Glacier in the Taylor Valley, of the McMurdo Dry Valleys, Antarctica. We conducted a series of additions including nitrate (N), N + phosphate (P), N + P + glucose (C), and N + C. In two reaches, N‐only additions resulted in N uptake. The third reach showed net N release during the N‐only addition, but high N uptake in the N + P addition, indicating P‐limitation or N + P colimitation. Coinjecting C did not increase N‐uptake. Additionally, in these systems at low N concentrations the streams can be a net source of nitrogen. We confirmed these findings using laboratory‐based nutrient incubation experiments on sediment collected from stream channels on Canada Glacier and two other glaciers in the Taylor Valley. Together, these results suggest there is active biological processing of nutrients occurring in these supraglacial streams despite low sediment cover, high flow velocities, and cold temperatures, modifying the input signals to proglacial streams. As glaciers worldwide undergo rapid change, these findings further our understanding of how melt generated on glacier surfaces set the initial nutrient signature for subglacial and downstream environments.

     
    more » « less
  5. Abstract

    Coastal upwelling of nutrients and metals along eastern boundary currents fuels some of the most biologically productive marine ecosystems. Although iron is a main driver of productivity in many of these regions, iron cycling and acquisition by microbes remain poorly constrained, in part due to the unknown composition of organic ligands that keep bioavailable iron in solution. In this study, we investigated organic ligand composition in discrete water samples collected across the highly productive California Coastal upwelling system. Siderophores were observed in distinct nutrient regimes at concentrations ranging from 1 pM to 18 pM. Near the shallow continental shelf, ferrioxamine B was observed in recently upwelled, high chlorophyll surface waters while synechobactins were identified within nepheloid layers at 60–90 m depth. In offshore waters characterized by intermediate chlorophyll, iron, and nitrate concentrations, we found amphibactins and an unknown siderophore with a molecular formula of C33H58O8N5Fe. Highest concentrations were measured in the photic zone, however, amphibactins were also found in waters as deep as 1500 m. The distribution of siderophores provides evidence for microbial iron deficiency across a range of nutrient regimes and indicates siderophore production and acquisition is an important strategy for biological iron uptake in iron limited coastal systems. Polydisperse humic ligands were also detected throughout the water column and were particularly abundant near the benthic boundary. Our results highlight the fine‐scale spatial heterogeneity of metal ligand composition in an upwelling environment and elucidate distinct sources that include biological production and the degradation of organic matter in suboxic waters.

     
    more » « less