Abstract Arid regions, particularly polar and alpine desert environments, have diminished landscape connectivity compared to temperate regions due to limited and/or seasonal hydrological processes. For these environments, aeolian processes play a particularly important role in landscape evolution and biotic community vitality through nutrient and solute additions. The McMurdo Dry Valleys (MDV) are the largest ice‐free area in Antarctica and are potentially a major source of aeolian material for the continent. From this region, samples were collected at five heights (~5, 10, 20, 50, and 100 cm) above the surface seasonally for 2013 through 2015 from Alatna Valley, Victoria Valley, Miers Valley, and Taylor Valley (Taylor Glacier, East Lake Bonney, F6 (Lake Fryxell), and Explorer's Cove). Despite significant geological separation and varying glacial histories, low‐elevation and coastal sites had similar major ion chemistries, as did high‐elevation and inland locations. This locational clustering of compositions was also evident in scanning electron microscopy images and principal component analyses, particularly for samples collected at ~100 cm above the surface. Compared to published soil literature, aeolian material in Taylor Valley demonstrates a primarily down‐valley transport of material toward the coast. Soluble N:P ratios in the aeolian material reflect relative nutrient enrichments seen in MDV soils and lakes, where younger, coastal soils are relatively N depleted, while older, up‐valley soils are relatively P depleted. The aeolian transport of materials, including water‐soluble nutrients, is an important vector of connectivity within the MDV and provides a mechanism to help “homogenize” the geochemistry of both soil and aquatic ecosystems.
more »
« less
Nutrient Uptake in the Supraglacial Stream Network of an Antarctic Glacier
Abstract In polar regions, where many glaciers are cold based (frozen to their beds), biological communities on the glacier surface can modulate and transform nutrients, controlling downstream delivery. However, it remains unclear whether supraglacial streams are nutrient sinks or sources and the rates of nutrient processing. In order to test this, we conducted tracer injections in three supraglacial streams (62 to 123 m long) on Canada Glacier in the Taylor Valley, of the McMurdo Dry Valleys, Antarctica. We conducted a series of additions including nitrate (N), N + phosphate (P), N + P + glucose (C), and N + C. In two reaches, N‐only additions resulted in N uptake. The third reach showed net N release during the N‐only addition, but high N uptake in the N + P addition, indicating P‐limitation or N + P colimitation. Coinjecting C did not increase N‐uptake. Additionally, in these systems at low N concentrations the streams can be a net source of nitrogen. We confirmed these findings using laboratory‐based nutrient incubation experiments on sediment collected from stream channels on Canada Glacier and two other glaciers in the Taylor Valley. Together, these results suggest there is active biological processing of nutrients occurring in these supraglacial streams despite low sediment cover, high flow velocities, and cold temperatures, modifying the input signals to proglacial streams. As glaciers worldwide undergo rapid change, these findings further our understanding of how melt generated on glacier surfaces set the initial nutrient signature for subglacial and downstream environments.
more »
« less
- Award ID(s):
- 1637708
- PAR ID:
- 10455871
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 125
- Issue:
- 9
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Debris-covered glaciers (DCGs) are globally distributed and thought to contain greater microbial diversity than clean surface continental glaciers, but the ecological characteristics of microbial communities on the surface of DCGs have remained underexplored. Here, we investigated bacterial and fungal diversity and co-occurrence networks on the supraglacial debris habitat of two DCGs (Hailuogou and Dagongba Glaciers) in the southeastern Tibetan Plateau. We found that the supraglacial debris harbored abundant microbes with Proteobacteria occupying more than half (51.5%) of the total bacteria operational taxonomic units. The composition, diversity, and co-occurrence networks of both bacterial and fungal communities in the debris were significantly different between Hailuogou Glacier and Dagongba Glacier even though the glaciers are geographically adjacent within the same mountain range. Bacteria were more diverse in the debris of the Dagongba Glacier, where a lower surface velocity and thicker debris layer allowed the supraglacial debris to continuously weather and accumulate nutrients. Fungi were more diverse in the debris of the Hailuogou Glacier, which experiences a wetter monsoonal climate, is richer in calcium, has greater debris instability, and greater ice velocity than the Dagongba Glacier. These factors may provide ideal conditions for the dispersal and propagation of fungi spores on the Hailuogou Glacier. In addition, we found an obvious gradient of bacterial diversity along the supraglacial debris transect on the Hailuogou Glacier. Bacterial diversity was lower where debris cover was thin and scattered and became more diverse near the glacial terminus in thick, slow-moving debris. No such increasing bacterial pattern was detected on the Dagongba Glacier, which implies a positive relationship of debris age, thickness, and weathering on bacterial diversity. Additionally, a highly connected bacterial co-occurrence network with low modularity was found in the debris of the Hailuogou Glacier. In contrast, debris from the Dagongba Glacier exhibited less connected but more modularized co-occurrence networks of both bacterial and fungal communities. These findings indicate that less disturbed supraglacial debris conditions are crucial for microbes to form stable communities on DCGs.more » « less
-
Abstract The biogeochemistry of rapidly retreating Andean glaciers is poorly understood, and Ecuadorian glacier dissolved organic matter (DOM) composition is unknown. This study examined molecular composition and carbon isotopes of DOM from supraglacial and outflow streams (n = 5 and 14, respectively) across five ice capped volcanoes in Ecuador. Compositional metrics were paired with streamwater isotope analyses (δ18O) to assess if outflow DOM composition was associated with regional precipitation gradients and thus an atmospheric origin of glacier DOM. Ecuadorian glacier outflows exported ancient, biolabile dissolved organic carbon (DOC), and DOM contained a high relative abundance (RA) of aliphatic and peptide‐like compounds (≥27%RA). Outflows were consistently more depleted in Δ14C‐DOC (i.e., older) compared to supraglacial streams (mean −195.2 and −61.3‰ respectively), perhaps due to integration of spatially heterogenous and variably aged DOM pools across the supraglacial environment, or incorporation of aged subglacial OM as runoff was routed to the outflow. Across Ecuador, Δ14C‐DOC enrichment was associated with decreased aromaticity of DOM, due to increased contributions of organic matter (OM) from microbial processes or atmospheric deposition of recently fixed and subsequently degraded OM (e.g., biomass burning byproducts). There was a regional gradient between glacier outflow DOM composition and streamwater δ18O, suggesting covariation between regional precipitation gradients and the DOM exported from glacier outflows. Ultimately, this highlights that atmospheric deposition may exert a control on glacier outflow DOM composition, suggesting regional air circulation patterns and precipitation sources in part determine the origins and quality of OM exported from glacier environments.more » « less
-
Abstract. Many studies in ecohydrology focusing on hydrologictransport argue that longer residence times across a stream ecosystem shouldconsistently result in higher biological uptake of carbon, nutrients, andoxygen. This consideration does not incorporate the potential forbiologically mediated reactions to be limited by stoichiometric imbalances.Based on the relevance and co-dependences between hydrologic exchange,stoichiometry, and biological uptake and acknowledging the limited amountof field studies available to determine their net effects on the retentionand export of resources, we quantified how microbial respiration iscontrolled by the interactions between and the supply of essential nutrients (C, N, and P)in a headwater stream in Colorado, USA. For this, we conducted two rounds ofnutrient experiments, each consisting of four sets of continuous injectionsof Cl− as a conservative tracer, resazurin as a proxy for aerobicrespiration, and one of the following nutrient treatments: (a) N, (b) N+C,(c) N+P, or (d) C+N+P. Nutrient treatments were considered to be knownsystem modifications that alter metabolism, and statistical tests helpedidentify the relationships between reach-scale hydrologic transport andrespiration metrics. We found that as discharge changed significantlybetween rounds and across stoichiometric treatments, (a) transient storagemainly occurred in pools lateral to the main channel and was proportional todischarge, and (b) microbial respiration remained similar between rounds andacross stoichiometric treatments. Our results contradict the notion thathydrologic transport alone is a dominant control on biogeochemicalprocessing and suggest that complex interactions between hydrology, resourcesupply, and biological community function are responsible for drivingin-stream respiration.more » « less
-
Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous region, primarily due to a lack of adequate data at large spatial and temporal scales. Here, we combine high-resolution biological and glacier change (ca. 1850–2015) datasets for Glacier National Park, USA, to test the prediction that glacier retreat reduces biodiversity in mountain ecosystems through the loss of uniquely adapted meltwater stream species. We identified a specialized cold-water invertebrate community restricted to the highest elevation streams primarily below glaciers, but also snowfields and groundwater springs. We show that this community and endemic species have unexpectedly persisted in cold, high-elevation sites, even in catchments that have not been glaciated in ∼170 y. Future projections suggest substantial declines in suitable habitat, but not necessarily loss of this community with the complete disappearance of glaciers. Our findings demonstrate that high-elevation streams fed by snow and other cold-water sources continue to serve as critical climate refugia for mountain biodiversity even after glaciers disappear.more » « less
An official website of the United States government
