skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical and stoichiometric controls on stream respiration in a headwater stream
Abstract. Many studies in ecohydrology focusing on hydrologictransport argue that longer residence times across a stream ecosystem shouldconsistently result in higher biological uptake of carbon, nutrients, andoxygen. This consideration does not incorporate the potential forbiologically mediated reactions to be limited by stoichiometric imbalances.Based on the relevance and co-dependences between hydrologic exchange,stoichiometry, and biological uptake and acknowledging the limited amountof field studies available to determine their net effects on the retentionand export of resources, we quantified how microbial respiration iscontrolled by the interactions between and the supply of essential nutrients (C, N, and P)in a headwater stream in Colorado, USA. For this, we conducted two rounds ofnutrient experiments, each consisting of four sets of continuous injectionsof Cl− as a conservative tracer, resazurin as a proxy for aerobicrespiration, and one of the following nutrient treatments: (a) N, (b) N+C,(c) N+P, or (d) C+N+P. Nutrient treatments were considered to be knownsystem modifications that alter metabolism, and statistical tests helpedidentify the relationships between reach-scale hydrologic transport andrespiration metrics. We found that as discharge changed significantlybetween rounds and across stoichiometric treatments, (a) transient storagemainly occurred in pools lateral to the main channel and was proportional todischarge, and (b) microbial respiration remained similar between rounds andacross stoichiometric treatments. Our results contradict the notion thathydrologic transport alone is a dominant control on biogeochemicalprocessing and suggest that complex interactions between hydrology, resourcesupply, and biological community function are responsible for drivingin-stream respiration.  more » « less
Award ID(s):
1642399 1914490
PAR ID:
10440438
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
20
Issue:
15
ISSN:
1726-4189
Page Range / eLocation ID:
3353 to 3366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Land cover changes alter hydrologic (e.g., infiltration-runoff), biochemical (e.g., nutrient loads), and ecological processes (e.g., stream metabolism). We quantified differences in aquatic ecosystem respiration in two contrasting stream reaches from a forested watershed in Colorado (1st-order reach) and an agricultural watershed in Iowa (3rd-order reach). We conducted two rounds of experiments in each of these reaches, featuring four sets of continuous injections of Cl as a conservative tracer, resazurin as a proxy for aerobic respiration, and one of the following nutrient treatments: (a) N, (b) N + C, (c) N + P, and (d) C + N + P. With those methods providing consistent information about solute transport, stream respiration, and nutrient processing at the same spatiotemporal scales, we sought to address: (1) Are respiration rates correlated with conservative transport metrics in forested or agricultural streams? and (2) Can short-term modifications of stoichiometric conditions (C:N:P ratios) override respiration patterns, or do long-term physicochemical conditions control those patterns? We found greater respiration in the reach located in the forested watershed but no correlations between respiration, discharge, and advective or transient storage timescales. All the experiments conducted in the agricultural stream featured a reaction-limited transformation of resazurin, suggesting the existence of nutrient or carbon limitations on respiration that our short-term nutrient treatments did not remove. In contrast, the forested stream was characterized by nearly balanced transformation and transient storage timescales. We also found that our short-lived nutrient treatments had minimal influence on the significantly different respiration patterns observed between reaches, which are most likely driven by the longer-term and highly contrasting ambient nutrient concentrations at each site. Our experimental results agree with large-scale analyses suggesting greater microbial respiration in headwater streams in the U.S. Western Mountains region than in second-to-third-order streams in the U.S. Temperate Plains region. 
    more » « less
  2. Autotrophic and heterotrophic microbes in stream biofilms dominate biogeochemical cycling and rely on nutrient and energy resources for growth and productivity. In the boreal forest, variation in these resources can originate from permafrost distribution and controls competition for nutrients between stream autotrophs and heterotrophs. We investigated which resources control nutrient uptake and metabolism in headwater stream biofilms of subarctic Alaska, USA, and how resource availability affects competition for inorganic nutrients. We hypothesized that the competitive outcome between autotrophs and heterotrophs for inorganic nutrients would be dependent on availability of organic C, or inorganic nutrients (N and P). To test our hypotheses, we measured resource limitation at the patch and reach scales along a permafrost gradient in interior Alaska. At the patch scale, nutrient diffusing substrata revealed that, secondary to light, N and P were colimiting to autotrophic growth, whereas C was primarily limiting to heterotrophic respiration. In the presence of labile C, heterotrophs exhibited a larger response to nutrient enrichment and outcompeted autotrophs for inorganic nutrients. At the reach scale, light availability had the largest influence on nutrient uptake, but inorganic nutrients were also important. The positive response to increased nutrient and C availability at the patch scale suggests that the predicted increase in exports into fluvial networks with permafrost degradation will alter biofilm structure and function. Ultimately, biofilm communities will shift to more heterotroph-dominated patches if heterotrophs outcompete autotrophs for inorganic nutrients. As permafrost thaws and nutrients and organic C mobilize into streams, nutrient uptake dynamics and competition within biofilms will be altered, affecting nutrient use and export. 
    more » « less
  3. Abstract In polar regions, where many glaciers are cold based (frozen to their beds), biological communities on the glacier surface can modulate and transform nutrients, controlling downstream delivery. However, it remains unclear whether supraglacial streams are nutrient sinks or sources and the rates of nutrient processing. In order to test this, we conducted tracer injections in three supraglacial streams (62 to 123 m long) on Canada Glacier in the Taylor Valley, of the McMurdo Dry Valleys, Antarctica. We conducted a series of additions including nitrate (N), N + phosphate (P), N + P + glucose (C), and N + C. In two reaches, N‐only additions resulted in N uptake. The third reach showed net N release during the N‐only addition, but high N uptake in the N + P addition, indicating P‐limitation or N + P colimitation. Coinjecting C did not increase N‐uptake. Additionally, in these systems at low N concentrations the streams can be a net source of nitrogen. We confirmed these findings using laboratory‐based nutrient incubation experiments on sediment collected from stream channels on Canada Glacier and two other glaciers in the Taylor Valley. Together, these results suggest there is active biological processing of nutrients occurring in these supraglacial streams despite low sediment cover, high flow velocities, and cold temperatures, modifying the input signals to proglacial streams. As glaciers worldwide undergo rapid change, these findings further our understanding of how melt generated on glacier surfaces set the initial nutrient signature for subglacial and downstream environments. 
    more » « less
  4. Abstract. African elephants (Loxodonta africana) are the largest extant terrestrial mammals, with bodies containing enormous quantities of nutrients. Yet, we know little about how these nutrients move through the ecosystem after an elephant dies. Here, we investigated the initial effects (1–26 months postmortem) of elephant megacarcasses on savanna soil and plant nutrient pools in the Kruger National Park, South Africa. We hypothesized that (H1) elephant megacarcass decomposition would release nutrients into soil, resulting in higher concentrations of soil nitrogen (N), phosphorus (P), and micronutrients near the center of carcass sites; (H2) carbon (C) inputs into the soil would stimulate microbial activity, resulting in increased soil respiration potential near the center of carcass sites; and (H3) carcass-derived nutrients would be absorbed by plants, resulting in higher foliar nutrient concentrations near the center of carcass sites. To test our hypotheses, we identified 10 elephant carcass sites split evenly between nutrient-poor granitic and nutrient-rich basaltic soils. At each site, we ran transects in the four cardinal directions from the center of the carcass site, collecting soil and grass (Urochloa trichopus, formerly U. mosambicensis) samples at 0, 2.5, 5, 10, and 15 m. We then analyzed samples for C, N, P, and micronutrient concentrations and quantified soil microbial respiration potential. We found that concentrations of soil nitrate, ammonium, δ15N, phosphate, and sodium were elevated closer to the center of carcass sites (H1). Microbial respiration potentials were positively correlated with soil organic C, and both respiration and organic C decreased with distance from the carcass (H2). Finally, we found evidence that plants were readily absorbing carcass-derived nutrients from the soil, with foliar %N, δ15N, iron, potassium, magnesium, and sodium significantly elevated closer to the center of carcass sites (H3). Together, these results indicate that elephant megacarcasses release ecologically consequential pulses of nutrients into the soil which stimulate soil microbial activity and are absorbed by plants into the above-ground nutrient pools. These localized nutrient pulses may drive spatiotemporal heterogeneity in plant diversity, herbivore behavior, and ecosystem processes. 
    more » « less
  5. Abstract Exploring nitrogen dynamics in stream networks is critical for understanding how these systems attenuate nutrient pollution while maintaining ecological productivity. We investigated Oak Creek, a dryland watershed in central Arizona, USA, to elucidate the relationship between terrestrial nitrate (NO3) loading and stream NO3uptake, highlighting the influence of land cover and hydrologic connectivity. We conducted four seasonal synoptic sampling campaigns along the 167‐km network combined with stream NO3uptake experiments (in 370–710‐m reaches) and integrated the data in a mass‐balance model to scale in‐stream uptake and estimate NO3loading from landscape to the stream network. Stream NO3concentrations were low throughout the watershed (<5–236 μg N/L) and stream NO3vertical uptake velocity was high (5.5–18.0 mm/min). During the summer dry (June), summer wet (September), and winter dry (November) seasons, the lower mainstem exhibited higher lateral NO3loading (10–51 kg N km−2 d−1) than the headwaters and tributaries (<0.001–0.086 kg N km−2 d−1), likely owing to differences in irrigation infrastructure and near‐stream land cover. In contrast, during the winter wet season (February) lateral NO3loads were higher in the intermittent headwaters and tributaries (0.008–0.479 kg N km−2 d−1), which had flowing surface water only in this season. Despite high lateral NO3loading in some locations, in‐stream uptake removed >81% of NO3before reaching the watershed outlet. Our findings highlight that high rates of in‐stream uptake maintain low nitrogen export at the network scale, even with high fluxes from the landscape and seasonal variation in hydrologic connectivity. 
    more » « less