- PAR ID:
- 10440517
- Date Published:
- Journal Name:
- Aquatic Sciences
- Volume:
- 85
- Issue:
- 2
- ISSN:
- 1015-1621
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Surface samples and depth profiles of carbon dioxide and methane concentrations were sampled from 2015 to 2022 in two drinking water reservoirs in southwestern Virginia, USA: Beaverdam Reservoir (Vinton, Virginia) and Falling Creek Reservoir (Vinton, Virginia). Both reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia. The dataset consists of depth profiles of dissolved greenhouse gas (carbon dioxide, methane) samples measured at the deepest site of each reservoir adjacent to the dam. Additional surface samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, from a wetland adjacent to Falling Creek Reservoir, and from the reservoir outflow. At Beaverdam Reservoir, additional samples were collected at three outflow points below the dam and at the mid-reservoir outflow. Samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly in November-February at Falling Creek Reservoir and Beaverdam Reservoir. In 2019, surface samples along the stream and reservoir continuum from both Falling Creek Reservoir and Beaverdam Reservoir were collected monthly during the summer stratified period (see site descriptions file for geographic coordinates of sampling sites).more » « less
-
Surface samples and depth profiles of carbon dioxide and methane concentrations were sampled from 2015 to 2023 in two drinking water reservoirs in southwestern Virginia, USA: Beaverdam Reservoir (Vinton, Virginia) and Falling Creek Reservoir (Vinton, Virginia). Both reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia. The dataset consists of depth profiles of dissolved greenhouse gas (carbon dioxide, methane) samples measured at the deepest site of each reservoir adjacent to the dam. Additional surface samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, from a wetland adjacent to Falling Creek Reservoir, and from the reservoir outflow. At Beaverdam Reservoir, additional samples were collected at three outflow points below the dam and at the mid-reservoir outflow. Samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly in November-February at Falling Creek Reservoir and Beaverdam Reservoir. In 2019, surface samples along the stream and reservoir continuum from both Falling Creek Reservoir and Beaverdam Reservoir were collected monthly during the summer stratified period (see site descriptions file for geographic coordinates of sampling sites).more » « less
-
Depth profiles of dissolved organic carbon and total and dissolved nitrogen and phosphorus were sampled from 2013 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. Some additional dissolved nitrogen and phosphorus samples from January to March 2023 are included in this data product. The five drinking water reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of water chemistry samples measured at the deepest site of each reservoir adjacent to the dam. Additional water chemistry samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, as well as surface samples at multiple upstream and inflow sites in Falling Creek Reservoir 2014-2022 and Beaverdam Reservoir in 2019 and 2020. One upstream site at BVR was sampled at depth in 2022. Inflow sites at Carvins Cove Reservoir were sampled from 2020 - 2022. The water column samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly from November-February at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, and approximately fortnightly from 2014-2016 in Gatewood and Spring Hollow Reservoirs, though sampling frequency and duration varied among reservoirs and years. Depth profiles of dissolved inorganic carbon were also collected from 2018-2022, but the analytical method for this analyte is still in development and these concentrations should be considered as preliminary data only.more » « less
-
Abstract Reservoirs along rivers have the potential to act as nutrient sinks (e.g., denitrification and sedimentation) or sources (e.g., decomposition and redox changes), potentially reducing or enhancing nutrient loads downstream. This study investigated the spatial and temporal variability of water and lakebed sediment chemistry for an agricultural reservoir, Carlyle Lake (Illinois, U.S.), to assess the role of sediments as nutrient sinks or sources. Samples were collected across the reservoir over a 2‐year period. We measured N‐ and P‐species in water at the sediment‐water interface, in sediment porewaters, and loosely bound to sediment exchange sites. Total N, total P, total C, organic matter, Fe, Mn, and grain size were measured in bulk sediments. We observed a strong gradient in sedimentary total N, total P, total C, organic matter, and metals along the reservoir, with the lowest concentrations at the river mouth and the highest concentrations near the dam. Additionally, we did a long‐term nutrient mass balance using historical water quality data for streams entering and exiting the reservoir and the reservoir itself. Mass balance calculations showed that Carlyle Lake, on average, removed 2,738 Mg N/year and released 121 Mg P/year over the multidecadal observation period. While N was consistently removed from the system over time, P was initially stored in, but later released from, the reservoir. The subsequent release of legacy P from the reservoir led to higher outgoing, compared with incoming, P loads. Thus, reservoirs in intensively managed landscapes can act as sinks for N but sources for P over decadal timescales.
-
Abstract Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl−, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling.