skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Importance of the Pressure Anisotropy Induced by Strong Magnetic Fields on Neutron Star Physics
Abstract In this paper we discuss in some detail how the pressures determined from semi-classical statistical averaging of the energy momentum tensor in the presence of a uniform background magnetic field are anisotropic with different pressures arising along and perpendicular to the magnetic field direction. Hence, we analyze how this result can affect two important characteristics of dense magnetized systems: (i) The hadron-quark phase transition in the presence of a magnetic field, (ii) The behavior of the speed of sound in dense magnetized systems. Taking into account that large magnetic fields are expected to be present in the interior of neutron stars, we will stress the role the pressure anisotropy plays in the physics of these compact astronomical objects.  more » « less
Award ID(s):
2013222
PAR ID:
10440683
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2536
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. R. Ruffini and G. Vereshchagin (Ed.)
    The equilibrium configuration of white dwarfs composed of anisotropic fluid distribution in the presence of a strong magnetic field is investigated in this work. By considering a functional form of the anisotropic stress and magnetic field profile, some physical properties of magnetized white dwarfs, such as mass, radius, density, radial and tangential pressures, are derived; their dependency on the anisotropy and central magnetic field is also explored. We show that the orientations of the magnetic field along the radial direction or orthogonal to the radial direction influence the stellar structure and physical properties of white dwarfs significantly. Importantly, we show that ignoring anisotropy governed by the fluid due to its high density in the presence of a strong magnetic field would destabilize the star. Through this work, we can explain the highly massive progenitor for peculiar over-luminous type Ia supernovae, and low massive progenitor for under-luminous type Ia supernovae, which poses a question of considering 1.4 solar mass white dwarf to be related to the standard candle. 
    more » « less
  2. ABSTRACT The majority of stars are in binary/multiple systems. How such systems form in turbulent, magnetized cores of molecular clouds in the presence of non-ideal magnetohydrodynamic (MHD) effects remains relatively underexplored. Through athena++-based non-ideal MHD adaptive mesh refinement simulations with ambipolar diffusion, we show that the collapsing protostellar envelope is dominated by dense gravo-magneto-sheetlets, a turbulence-warped version of the classic pseudodisc produced by anisotropic magnetic resistance to the gravitational collapse, in agreement with previous simulations of turbulent, magnetized single-star formation. The sheetlets feed mass, magnetic fields, and angular momentum to a Dense ROtation-Dominated (DROD) structure, which fragments into binary/multiple systems. This DROD fragmentation scenario is a more dynamic variant of the traditional disc fragmentation scenario for binary/multiple formation, with dense spiral filaments created by inhomogeneous feeding from the highly structured larger-scale sheetlets rather than the need for angular momentum transport, which is dominated by magnetic braking. Provided that the local material is sufficiently demagnetized, with a plasma-$$\beta$$ of 10 or more, collisions between the dense spiralling filaments play a key role in facilitating gravitational collapse and stellar companion formation by pushing the local magnetic Toomre parameter $$Q_\mathrm{m}$$ below unity. This mechanism can naturally produce in situ misaligned systems on the 100-au scale, often detected with high-resolution Atacama Large Millimeter Array (ALMA) observations. Our simulations also highlight the importance of non-ideal MHD effects, which affect whether fragmentation occurs and, if so, the masses and orbital parameters of the stellar companions formed. 
    more » « less
  3. ABSTRACT The merger of two magnetized compact objects, such as neutron stars, forms a compact object which may launch a relativistic and collimated jet. Numerical simulations of the process show that a dense and highly magnetized medium surrounds the system. This study presents a semi-analytical model that models the effects that a static magnetized medium with a tangled field produces in relativistic, collimated, and non-magnetized jets. The model is a first approximation that addresses the magnetic field present in the medium and is based on pressure equilibrium principles between the jet, cocoon, and external medium. A fraction of the ambient medium field is allowed to be entrained in the cocoon. We find that the jet and cocoon properties may be affected by high magnetic fields (≳ 1015 G) and mixing. The evolution of the system may vary up to $$\sim 10{{\ \rm per\ cent}}$$ (compared to the non-magnetized case). Low-mixing may produce a slower broader jet with a broader and more energetic cocoon would be produced. On the other hand, high-mixing could produce a faster narrower jet with a narrow and less-energetic cocoon. Two-dimensional hydrodynamical simulations are used to validate the model and to constrain the mixing parameter. Although the magnetic field and mixing have a limited effect, our semi-analytic model captures the general trend consistent with numerical results. For high magnetization, the results were found to be more consistent with the low mixing case in our semi-analytic model. 
    more » « less
  4. Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models. 
    more » « less
  5. Abstract Pattern formation and self-organization in many biological and non-biological systems can be explained through Turing’s activator-inhibitor model. Here we show how this model can be employed to describe the formation of filamentary structures in a low-pressure electric discharge exposed to a strong magnetic field. Theoretical investigation reveals that the fluid equations describing a magnetized plasma can be rearranged to take the mathematical form of Turing’s activator-inhibitor model. Numerical simulations based on the equations derived from this approach could reproduce the various patterns observed in the experiments. Also, it is shown that a density imbalance between electrons and ions exists in the bulk of the magnetized plasma that generates an electric field structure transverse to the applied magnetic field. This electric field is responsible for the stability of the filamentary patterns in the magnetized plasma over time scales much longer than the characteristic time scales of the electric discharge. 
    more » « less