Image data plays a pivotal role in the current data-driven era, particularly in applications such as computer vision, object recognition, and facial identification. Google Maps ® stands out as a widely used platform that heavily relies on street view images. To fulfill the pressing need for an effective and distributed mechanism for image data collection, we present a framework that utilizes smart contract technology and open-source robots to gather street-view image sequences. The proposed framework also includes a protocol for maintaining these sequences using a private blockchain capable of retaining different versions of street views while ensuring the integrity of collected data. With this framework, Google Maps ® data can be securely collected, stored, and published on a private blockchain. By conducting tests with actual robots, we demonstrate the feasibility of the framework and its capability to seamlessly upload privately maintained blockchain image sequences to Google Maps ® using the Google Street View ® Publish API.
more »
« less
Vegetation Coverage and Urban Amenity Mapping Using Computer Vision and Machine Learning [Vegetation Coverage and Urban Amenity Mapping Using Computer Vision and Machine Learning]
This paper proposes a computer vision-based workflow that analyses Google 360-degree street views to understand the quality of urban spaces regarding vegetation coverage and accessibility of urban amenities such as benches. Image segmentation methods were utilized to produce an annotated image with the amount of vegetation, sky and street coloration. Two deep learning models were used -- Monodepth2 for depth detection and YoloV5 for object detection -- to create a 360-degree diagram of vegetation and benches at a given location. The automated workflow allows non-expert users like planners, designers, and communities to analyze and evaluate urban environments with Google Street Views. The workflow consists of three components: (1) user interface for location selection; (2) vegetation analysis, bench detection and depth estimation; and (3) visualization of vegetation coverage and amenities. The analysis and visualization could inform better urban design outcomes.
more »
« less
- PAR ID:
- 10440685
- Date Published:
- Journal Name:
- Proceedings of the 3rd International Conference on Image Processing and Vision Engineering (IMPROVE 2023)
- Page Range / eLocation ID:
- 67 to 75
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.more » « less
-
Urban areas are often warmer than rural areas due to the phenomenon known as the “urban heat island” (UHI) effect, which can cause discomfort for those engaging in outdoor activities and can have a disproportionate impact on low-income communities, people of color, and the elderly. The intensity of the UHI effect is influenced by a variety of factors, including urban morphology, which can vary from one area to another. To investigate the relationship between outdoor thermal comfort and urban morphology in different urban blocks with varying social vulnerability status, this study developed a geographic information system (GIS)-based workflow that combined the “local climate zone” (LCZ) classification system and an urban microclimate assessment tool called ENVI-met. To demonstrate the effectiveness of this methodology, the study selected two different urban blocks in Philadelphia, Pennsylvania–with high and low social vulnerability indices (SVI)–to compare their microclimate conditions in association with urban morphological characteristics such as green coverage area, sky view factor (SVF), albedo, and street height to width (H/W) ratio. The results of the study showed that there was a strong correlation between tree and grass coverage and outdoor air and mean radiant temperature during hot seasons and extremely hot days, which in turn affected simulated predicted mean vote (PMV). The effects of greenery were more significant in the block associated with a low SVI, where nearly 50% of the site was covered by trees and grass, compared to only 0.02% of the other block associated with a high SVI. Furthermore, the investigation discovered that reduced SVF, along with increased albedo and H/W ratio, had a beneficial impact on the microclimate at the pedestrian level within the two studied urban blocks. This study provided an effective and easy-to-implement method for tackling the inequity issue of outdoor thermal comfort and urban morphology at fine geographic scales.more » « less
-
In the US, people spend 87% of their time indoors and have an average of four connected devices per person (in 2020). As such, providing indoor coverage has always been a challenge but becomes even more difficult as carrier frequencies increase to mmWave and beyond. This paper investigates the outdoor and outdoor-indoor coverage of an urban network comparing globally standardized building penetration models and implementing models to corresponding scenarios. The glass used in windows of buildings in the grid plays a pivotal role in determining the outdoor-to-indoor propagation loss. For 28 GHz with 1 W/polarization transmit power in the urban street grid, the downlink data rates for 90% of outdoor users are estimated at over 250 Mbps. In contrast, 15% of indoor users are estimated to be in outage, with SNR < −3 dB when base stations are 400 m apart with one-fifth of the buildings imposing high penetration loss (∼ 35 dB). At 3.5 GHz, base stations may achieve over 250 Mbps for 90% indoor users if 400 MHz bandwidth with 100 W/polarization transmit power is available. The methods and models presented can be used to facilitate decisions regarding the density and transmit power required to provide high data rates to majority users in urban centers.more » « less
-
Given the widespread presence of non-native vegetation in urban and Mediterranean watersheds, it is important to evaluate how these sensitive ecosystems will respond to activities to manage and restore native vegetation conditions. This research focuses on Del Cerro, a tributary of the San Diego River in California, where non-native vegetation dominates the riparian zone, creating flooding and fire hazards. Field data were collected in 2018 to 2021 and consisted of water depth, streamflow, and stream temperature. Our data set also captured baseline conditions in the floodplain before and after the removal of burned non-native vegetation in November 2020. Observed changes in hydrologic and geomorphic conditions were used to parameterize and calibrate a two-dimensional hydraulic model to simulate urban floodplain hydraulics after vegetation removal. We utilized the U.S. Army Corps of Engineers’ Hydrologic Engineering Center River Assessment System (HEC-RAS) model to simulate the influence of canopy loss and vegetation disturbance and to assess the impacts of vegetation removal on stream restoration. We simulated streamflow, water depth, and flood extent for two scenarios: (1) 2019; pre-restoration where non-native vegetation dominated the riparian area, and (2) 2021; post-restoration following the removal of non-native vegetation and canopy. Flooding after restoration in 2021 was more frequent compared to 2019. We also observed similar flood extents and peak streamflow for storm events that accumulated half the amount of precipitation as pre-restoration conditions. Our results provide insight into the responses of small urban stream reaches to the removal of invasive vegetation and canopy cover.more » « less
An official website of the United States government

