The frequency distributions can characterize the population-potential landscape related to the stability of ecological states. We illustrate the practical utility of this approach by analyzing a forest–savanna model. Savanna and forest states coexist under certain conditions, consistent with past theoretical work and empirical observations. However, a grassland state, unseen in the corresponding deterministic model, emerges as an alternative quasi-stable state under fluctuations, providing a theoretical basis for the appearance of widespread grasslands in some empirical analyses. The ecological dynamics are determined by both the population-potential landscape gradient and the steady-state probability flux. The flux quantifies the net input/output to the ecological system and therefore the degree of nonequilibriumness. Landscape and flux together determine the transitions between stable states characterized by dominant paths and switching rates. The intrinsic potential landscape admits a Lyapunov function, which provides a quantitative measure of global stability. We find that the average flux, entropy production rate, and free energy have significant changes near bifurcations under both finite and zero fluctuation. These may provide both dynamical and thermodynamic origins of the bifurcations. We identified the variances in observed frequency time traces, fluctuations, and time irreversibility as kinematic measures for bifurcations. This framework opens the way to characterize ecological systems globally, to uncover how they change among states, and to quantify the emergence of quasi-stable states under stochastic fluctuations. 
                        more » 
                        « less   
                    
                            
                            Prevalence of multistability and nonstationarity in driven chemical networks
                        
                    
    
            External flows of energy, entropy, and matter can cause sudden transitions in the stability of biological and industrial systems, fundamentally altering their dynamical function. How might we control and design these transitions in chemical reaction networks? Here, we analyze transitions giving rise to complex behavior in random reaction networks subject to external driving forces. In the absence of driving, we characterize the uniqueness of the steady state and identify the percolation of a giant connected component in these networks as the number of reactions increases. When subject to chemical driving (influx and outflux of chemical species), the steady state can undergo bifurcations, leading to multistability or oscillatory dynamics. By quantifying the prevalence of these bifurcations, we show how chemical driving and network sparsity tend to promote the emergence of these complex dynamics and increased rates of entropy production. We show that catalysis also plays an important role in the emergence of complexity, strongly correlating with the prevalence of bifurcations. Our results suggest that coupling a minimal number of chemical signatures with external driving can lead to features present in biochemical processes and abiogenesis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856250
- PAR ID:
- 10440776
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 158
- Issue:
- 22
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We study time-recurrent hierarchical networks that model complex systems in biology, economics, and ecology. These networks resemble real-world topologies, with strongly connected hubs (centers) and weakly connected nodes (satellites). Under natural structural assumptions, we develop a mean-field approach that reduces network dynamics to the central nodes alone. Even in the two-layer case, we establish universal dynamical approximation, demonstrating that these networks can replicate virtually any dynamical behavior by tuning center-satellite interactions. In multilayered networks, this property extends further, enabling the approximation of families of structurally stable systems and the emergence of complex bifurcations, such as pitchfork bifurcations under strong inter-satellite interactions. We also show that internal noise within nodes moderates bifurcations, leading to noise-induced phase transitions. A striking effect emerges where central nodes may lose control over satellites, akin to transitions observed in perceptrons studied by E. Gardner-relevant in complex combinatorial problems. Finally, we examine the networks’ responses to stress, demonstrating that increasing complexity during evolution is crucial for long-term viability.more » « less
- 
            In networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections is untested in free-running (i.e., non-computer-controlled) systems. Here, we develop a model experimental reaction-diffusion network of chemical oscillators to test applications of the theory of dynamical systems with symmeries in the context of self-organizing systems relevant to biology and soft robotics. The network is a ring of four microreactors containing the oscillatory Belousov-Zhabotinsky reaction coupled to nearest neighbors via diffusion. Assuming homogeneity across the oscillators, theory predicts four categories of stable spatiotemporal phase-locked periodic states and four categories of invariant manifolds that guide and structure transitions between phase-locked states. In our experiments, we observed that three of the four phase-locked states were displaced from their idealized positions and, in the ensemble of measurements, appeared as clusters of different shapes and sizes, and that one of the predicted states was absent. We also observed the predicted symmetry-derived synchronous clustered transients that occur when the dynamical trajectories coincide with invariant manifolds. Quantitative agreement between experiment and numerical simulations is found by accounting for the small amount of experimentally determined heterogeneity in intrinsic frequency. We further elucidate how different patterns of heterogeneity impact each attractor differently through a bifurcation analysis. We show that examining bifurcations along invariant manifolds provides a general framework for developing intuition about how chemical-specific dynamics interact with topology in the presence of heterogeneity that can be applied to other oscillators in other topologies.more » « less
- 
            Well-mixed chemical reaction networks (CRNs) contain many distinct chemical species with copy numbers that fluctuate in correlated ways. While those correlations are typically monitored via Monte Carlo sampling of stochastic trajectories, there is interest in systematically approximating the joint distribution over the exponentially large number of possible microstates using tensor networks or tensor trains. We exploit the tensor network strategy to determine when the steady state of a seven-species gene toggle switch CRN model supports bistability as a function of two decomposition rates, both parameters of the kinetic model. We highlight how the tensor network solution captures the effects of stochastic fluctuations, going beyond mean field and indeed deviating meaningfully from a mean-field analysis. The work furthermore develops and demonstrates several technical advances that will allow steady-states of broad classes of CRNs to be computed in a manner conducive to parameter exploration. We show that the steady-state distributions can be computed via the ordinary density matrix renormalization group (DMRG) algorithm, despite having a non-Hermitian rate operator with a small spectral gap, we illustrate how that steady-state distribution can be efficiently projected to an order parameter that identifies bimodality, and we employ excited-state DMRG to calculate a relaxation timescale for the bistability.more » « less
- 
            Abstract Understanding how the movement of individuals affects disease dynamics is critical to accurately predicting and responding to the spread of disease in an increasingly interconnected world. In particular, it is not yet known how movement between patches affects local disease dynamics (e.g., whether pathogen prevalence remains steady or oscillates through time). Considering a set of small, archetypal metapopulations, we find three surprisingly simple patterns emerge in local disease dynamics following the introduction of movement between patches: (1) movement between identical patches with cyclical pathogen prevalence dampens oscillations in the destination while increasing synchrony between patches; (2) when patches differ from one another in the absence of movement, adding movement allows dynamics to propagate between patches, alternatively stabilizing or destabilizing dynamics in the destination based on the dynamics at the origin; and (3) it is easier for movement to induce cyclical dynamics than to induce a steady-state. Considering these archetypal networks (and the patterns they exemplify) as building blocks of larger, more realistically complex metapopulations provides an avenue for novel insights into the role of host movement on disease dynamics. Moreover, this work demonstrates a framework for future predictive modelling of disease spread in real populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    