skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Label-free drug interaction screening via Raman microscopy
Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein–ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor–binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug.  more » « less
Award ID(s):
2013771
PAR ID:
10440829
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
30
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While the COVID-19 pandemic continues to worsen, effective medicines that target the life cycle of SARS-CoV-2 are still under development. As more highly infective and dangerous variants of the coronavirus emerge, the protective power of vaccines will decrease or vanish. Thus, the development of drugs, which are free of drug resistance is direly needed. The aim of this study is to identify allosteric binding modulators from a large compound library to inhibit the binding between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 2 (hACE2). The binding of the Spike protein to hACE2 is the first step of the infection of host cells by the coronavirus. We first built a compound library containing 77 448 antiviral compounds. Molecular docking was then conducted to preliminarily screen compounds which can potently bind to the Spike protein at two allosteric binding sites. Next, molecular dynamics simulations were performed to accurately calculate the binding affinity between the spike protein and an identified compound from docking screening and to investigate whether the compound can interfere with the binding between the Spike protein and hACE2. We successfully identified two possible drug binding sites on the Spike protein and discovered a series of antiviral compounds which can weaken the interaction between the Spike protein and hACE2 receptor through conformational changes of the key Spike residues at the Spike–hACE2 binding interface induced by the binding of the ligand at the allosteric binding site. We also applied our screening protocol to another compound library which consists of 3407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike–ACE2 binding. Thus, we developed a promising computational protocol to discover allosteric inhibitors of the binding of the Spike protein of SARS-CoV-2 to the hACE2 receptor, and several promising allosteric modulators were discovered. 
    more » « less
  2. null (Ed.)
    While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody–peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64–71% and 86–91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes. 
    more » « less
  3. Virtual screening is a cost- and time-effective alternative to traditional high-throughput screening in the drug discovery process. Both virtual screening approaches, structure-based molecular docking and ligand-based cheminformatics, suffer from computational cost, low accuracy, and/or reliance on prior knowledge of a ligand that binds to a given target. Here, we propose a neural network framework, NeuralDock, which accelerates the process of high-quality computational docking by a factor of 10 6 , and does not require prior knowledge of a ligand that binds to a given target. By approximating both protein-small molecule conformational sampling and energy-based scoring, NeuralDock accurately predicts the binding energy, and affinity of a protein-small molecule pair, based on protein pocket 3D structure and small molecule topology. We use NeuralDock and 25 GPUs to dock 937 million molecules from the ZINC database against superoxide dismutase-1 in 21 h, which we validate with physical docking using MedusaDock. Due to its speed and accuracy, NeuralDock may be useful in brute-force virtual screening of massive chemical libraries and training of generative drug models. 
    more » « less
  4. High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX. 
    more » « less
  5. null (Ed.)
    Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have a higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in a 24-multiplexed chip format with less than 5% measurement error. 
    more » « less