- Award ID(s):
- 2104229
- PAR ID:
- 10440870
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 045007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces via Reilly’s identities. As applications, we derive several geometric inequalities for a convex hypersurface Γ \Gamma in a Cartan-Hadamard manifold M M . In particular, we show that the first mean curvature integral of a convex hypersurface γ \gamma nested inside Γ \Gamma cannot exceed that of Γ \Gamma , which leads to a sharp lower bound for the total first mean curvature of Γ \Gamma in terms of the volume it bounds in M M in dimension 3. This monotonicity property is extended to all mean curvature integrals when γ \gamma is parallel to Γ \Gamma , or M M has constant curvature. We also characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in Cartan-Hadamard manifolds.more » « less
-
Using harmonic mean curvature flow, we establish a sharp Minkowski-type lower bound for total mean curvature of convex surfaces with a given area in Cartan-Hadamard $3$-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic $3$-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved $3$-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan–Hadamard manifolds of any dimension.more » « less
-
Abstract We study the mean curvature flow in 3-dimensional null hypersurfaces. In a spacetime a hypersurface is called null, if its induced metric is degenerate. The speed of the mean curvature flow of spacelike surfaces in a null hypersurface is the projection of the codimension-two mean curvature vector onto the null hypersurface. We impose fairly mild conditions on the null hypersurface. Then for an outer un-trapped initial surface, a condition which resembles the mean-convexity of a surface in Euclidean space, we prove that the mean curvature flow exists for all times and converges smoothly to a marginally outer trapped surface (MOTS). As an application we obtain the existence of a global foliation of the past of an outermost MOTS, provided the null hypersurface admits an un-trapped foliation asymptotically.
-
A well-known question of Perelman concerns the classification of noncompact ancient solutions to the Ricci flow in dimension 3 which have positive sectional curvature and are κ-noncollapsed. In this paper, we solve the analogous problem for mean curvature flow in R^3, and prove that the rotationally symmetric bowl soliton is the only noncompact ancient solution of mean curvature flow in R^3 which is strictly convex and noncollapsed.more » « less