Using harmonic mean curvature flow, we establish a sharp Minkowski-type lower bound for total mean curvature of convex surfaces with a given area in Cartan-Hadamard $$3$$-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic $$3$$-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved $$3$$-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan–Hadamard manifolds of any dimension.
more »
« less
Total mean curvatures of Riemannian hypersurfaces
Abstract We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces via Reilly’s identities. As applications, we derive several geometric inequalities for a convex hypersurface Γ \Gamma in a Cartan-Hadamard manifold M M . In particular, we show that the first mean curvature integral of a convex hypersurface γ \gamma nested inside Γ \Gamma cannot exceed that of Γ \Gamma , which leads to a sharp lower bound for the total first mean curvature of Γ \Gamma in terms of the volume it bounds in M M in dimension 3. This monotonicity property is extended to all mean curvature integrals when γ \gamma is parallel to Γ \Gamma , or M M has constant curvature. We also characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in Cartan-Hadamard manifolds.
more »
« less
- Award ID(s):
- 2202337
- PAR ID:
- 10394464
- Date Published:
- Journal Name:
- Advanced Nonlinear Studies
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 2169-0375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the “vanishing” time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter {\gamma>\frac{1}{2}} , there is a solution with the highest curvature blowing up at the rate {(T-t)^{{-(\gamma+\frac{1}{2})}}} . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the “Grim Reaper” solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ.more » « less
-
Abstract We introduce a family of functionals defined on the set of submanifolds of Cartan–Hadamard manifolds which generalize the Colding–Minicozzi entropy of submanifolds of Euclidean space.We show these functionals are monotone under mean curvature flow under natural conditions.As a consequence, we obtain sharp lower bounds on these entropies for certain closed hypersurfaces and observe a novel rigidity phenomenon.more » « less
-
We show that a compact Riemannian -manifold with strictly convex simply connected boundary and sectional curvature is isometric to a convex domain in a complete simply connected space of constant curvature , provided that on planes tangent to the boundary of . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for .more » « less
-
We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign.more » « less
An official website of the United States government

