Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. For instance, we observe that a real-world eBay transaction dataset revealed an over 50% decline in fraud detection accuracy when adding data from only a single new day to the graph due to data distribution shifts. This highlights a critical vulnerability in purely data-driven approaches. Meanwhile, real-world domain knowledge, such as "simultaneous transactions in two locations are suspicious," is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. In addition, KnowGraph has leveraged the Predictability-Computability-Stability (PCS) framework for veridical data science to estimate and mitigate prediction uncertainties. Empirically, KnowGraph has been rigorously evaluated on two significant real-world scenarios: collusion detection in the online marketplace eBay and intrusion detection within enterprise networks. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.
more »
« less
Euler : Detecting Network Lateral Movement via Scalable Temporal Link Prediction
Lateral movement is a key stage of system compromise used by advanced persistent threats. Detecting it is no simple task. When network host logs are abstracted into discrete temporal graphs, the problem can be reframed as anomalous edge detection in an evolving network. Research in modern deep graph learning techniques has produced many creative and complicated models for this task. However, as is the case in many machine learning fields, the generality of models is of paramount importance for accuracy and scalability during training and inference. In this article, we propose a formalized approach to this problem with a framework we call Euler . It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence encoding layer such as a recurrent neural network. Models built according to the Euler framework can easily distribute their graph convolutional layers across multiple machines for large performance improvements. Additionally, we demonstrate that Euler -based models are as good, or better, than every state-of-the-art approach to anomalous link detection and prediction that we tested. As anomaly-based intrusion detection systems, our models efficiently identified anomalous connections between entities with high precision and outperformed all other unsupervised techniques for anomalous lateral movement detection. Additionally, we show that as a piece of a larger anomaly detection pipeline, Euler models perform well enough for use in real-world systems. With more advanced, yet still lightweight, alerting mechanisms ingesting the embeddings produced by Euler models, precision is boosted from 0.243, to 0.986 on real-world network traffic.
more »
« less
- Award ID(s):
- 2127207
- PAR ID:
- 10440905
- Date Published:
- Journal Name:
- ACM Transactions on Privacy and Security
- Volume:
- 26
- Issue:
- 3
- ISSN:
- 2471-2566
- Page Range / eLocation ID:
- 1 to 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms.more » « less
-
Anomaly detection in complex domains poses significant challenges due to the need for extensive labeled data and the inherently imbalanced nature of anomalous versus benign samples. Graph-based machine learning models have emerged as a promising solution that combines attribute and relational data to uncover intricate patterns. However, the scarcity of anomalous data exacerbates the challenge, which requires innovative strategies to enhance model learning with limited information. In this paper, we hypothesize that the incorporation of the influence of the nodes, quantified through average controllability, can significantly improve the performance of anomaly detection. We propose two novel approaches to integrate average controllability into graph-based frameworks: (1) using average controllability as an edge weight and (2) encoding it as a one-hot edge attribute vector. Through rigorous evaluation on real-world and synthetic networks with six state-of-the-art baselines, our proposed methods demonstrate improved performance in identifying anomalies, highlighting the critical role of controllability measures in enhancing the performance of graph machine learning models. This work underscores the potential of integrating average controllability as additional metrics to address the challenges of anomaly detection in sparse and imbalanced datasets.more » « less
-
null (Ed.)Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social network analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; (2) equipping the proposed GDN with a new cross- network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive experimental evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection.more » « less
-
The unsupervised anomaly detection problem holds great importance but remains challenging to address due to the myriad of data possibilities in our daily lives. Currently, distinct models are trained for different scenarios. In this work, we introduce a reconstruction-based anomaly detection structure built on the Latent Space Denoising Diffusion Probabilistic Model (LDM). This structure effectively detects anomalies in multi-class situations. When normal data comprises multiple object categories, existing reconstruction models often learn identical patterns. This leads to the successful reconstruction of both normal and anomalous data based on these patterns, resulting in the inability to distinguish anomalous data. To address this limitation, we implemented the LDM model. Its process of adding noise effectively disrupts identical patterns. Additionally, this advanced image generation model can generate images that deviate from the input. We have further proposed a classification model that compares the input with the reconstruction results, tapping into the generative power of the LDM model. Our structure has been tested on the MNIST and CIFAR-10 datasets, where it surpassed the performance of state-of-the-art reconstruction-based anomaly detection models.more » « less
An official website of the United States government

