Abstract This article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.
more »
« less
Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa
This article examines the reliability of satellite and reanalysis estimates of rainfall in the Congo Basin and over Lake Victoria and its catchment. Nine satellite products and five reanalysis products are considered. They are assessed by way of inter-comparison and by comparison with observational data sets. The three locations considered include a region with little observational gauge data (the Congo), a region with extensive gauge data (Lake Victoria catchment), and an inland water body. Several important results emerge: for one, the diversity of estimates is generally very large, except for the Lake Victoria catchment. Reanalysis products show little relationship with observed rainfall or with the satellite estimates, and thus should not be used to assess rainfall in these regions. Most of the products either overestimate or underestimate rainfall over the lake. The diversity of estimates makes it difficult to assess the factors governing the interannual variability of rainfall in these regions. This is shown by way of correlation with sea-surface temperatures, particularly with the Niño 3.4 temperatures and with the Dipole Mode Index over the Indian Ocean. Some guidance is given as to the best products to utilize. Overall, any user must establish that the is product reliable in the region studied.
more »
« less
- Award ID(s):
- 1850661
- PAR ID:
- 10440933
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 13
- Issue:
- 18
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 3609
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This article examines the diurnal cycle of lake-effect rains over Lake Victoria and of rainfall in the surrounding catchment. The analysis focuses on four months, which represent the two wet seasons (April and November) and the two dry seasons (February and July). Lake-effect rains are strongest in April, weakest in July. In all cases there is a nocturnal rainfall maximum over the lake and a daytime maximum over the catchment, with the transition between rainfall over the lake and over the catchment occurring between 1200 and 1500 LST. During the night the surrounding catchment is mostly dry. Conversely, little to no rain falls over the lake during the afternoon and early evening. In most cases the maximum over the lake occurs at either 0600 or 0900 LST and the maximum over the catchment occurs around 1500 to 1800 LST. The diurnal cycle of Mesoscale Convective Systems (MCSs) parallels that of over-lake rainfall. MCS initiation generally begins over the catchment around 1500 LST and increases at 1800 LST. MCS initiation over the lake begins around 0300 LST and continues until 1200 LST. While some MCSs originate over the highlands to the east of the lake, most originate in situ over the lake. Maximum MCS activity over the lake occurs at 0600 LST and is associated with the systems that initiate in situ .more » « less
-
Long‐term trends in equatorial African rainfall have proven difficult to determine because of a dearth in ground‐measured rainfall data. Multiple, satellite‐based products now provide daily rainfall estimates from 1983 to the present at relatively fine spatial resolutions, but in order to assess trends in rainfall, they must be validated alongside ground‐based measurements. The purpose of this paper is twofold: (a) to assess the accuracy of four rainfall products covering the past several decades in western Uganda; and (b) to ascertain recent, multi‐decadal trends in annual rainfall for the region. The four products are African Rainfall Climatology Version 2 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN‐CDR), and TAMSAT African Rainfall Climatology And Timeseries (TARCAT). The bias and accuracy of 10‐day, monthly, and seasonal rainfall totals of the four products were assessed using approximately 10 years of data from 10 rain gauges. The homogeneity of the products over multiple time periods was assessed using change‐point analysis. The accuracy of the four products increased with an increase in temporal scale, and CHIRPS was the only product that could be considered sufficiently accurate at estimating seasonal rainfall totals throughout most of the region. TARCAT tended to underestimate totals, and ARC2 and PERSIANN were in general the least accurate products. Only annual rainfall estimates from CHIRPS and TARCAT were significantly correlated with ground‐measured rainfall totals. TARCAT was the most homogeneous product, while ARC2, CHIRPS, and PERSIANN had significant negative change points that caused a drying bias over the 1983–2016 period. After adjusting the satellite‐based rainfall estimates based on the timing and magnitude of the change points, annual rainfall totals derived from all four products indicated that western Uganda experienced significantly increasing rainfall from 1983 to 2016.more » « less
-
Abstract The purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development.more » « less
-
Abstract Large spatio‐temporal gradients in the Congo basin vegetation and rainfall are observed. However, its water‐balance (evapotranspiration minus precipitation, orET − P) is typically measured at basin‐scales, limited primarily by river‐discharge data, spatial resolution of terrestrial water storage measurements, and poorly constrainedET. We use observations of the isotopic composition of water vapor to quantify the spatio‐temporal variability of net surface water fluxes across the Congo Basin between 2003 and 2018. These data are calibrated at basin scale using satellite gravity and total Congo river discharge measurements and then used to estimate time‐varyingET − Pover four quadrants representing the Congo Basin, providing first estimates of this kind for the region. We find that the multi‐year record, seasonality, and interannual variability ofET − Pfrom both the isotopes and the gravity/river discharge based estimates are consistent. Additionally, we use precipitation and gravity‐based estimates with our water vapor isotope‐basedET − Pto calculate time and space averagedETand net river discharge within the Congo Basin. These quadrant‐scale moisture flux estimates indicate (a) substantial recycling of moisture in the Congo Basin (temporally and spatially averagedET/P > 70%), consistent with models and visible light‐basedETestimates, and (b) net river outflow is largest in the Western Congo where there are more rivers and higher flow rates. Our results confirm the importance ofETin modulating the Congo water cycle relative to other water sources.more » « less
An official website of the United States government

