This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection–diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.
- Award ID(s):
- 1910180
- PAR ID:
- 10441142
- Date Published:
- Journal Name:
- Fractional Calculus Applied Analysis
- Volume:
- 25
- ISSN:
- 1314-2224
- Page Range / eLocation ID:
- 2488–2531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonlocal operators that have appeared in a variety of physical models satisfy identities and enjoy a range of properties similar to their classical counterparts. In this paper, we obtain Helmholtz-Hodge type decompositions for two-point vector fields in three components that have zero nonlocal curls, zero nonlocal divergence, and a third component which is (nonlocally) curl-free and divergence-free. The results obtained incorporate different nonlocal boundary conditions, thus being applicable in a variety of settings.more » « less
-
This lecture serves as an invitation to further studies on nonlocal models, their mathematics, computation, and applications. We sample our recent attempts in the development of a systematic mathematical framework for nonlocal models, including basic elements of nonlocal vector calculus, well-posedness of nonlocal variational problems, coupling to local models, convergence and compatibility of numerical approximations, and applications to nonlocal mechanics and diffusion. We also draw connections with traditional models and other relevant mathematical subjects.more » « less
-
Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \Omega $ that is either a bounded domain in $ \mathbb{R}^{d} $ or $ \mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.
-
Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition.more » « less