skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fifty years of runoff response to conversion of old‐growth forest to planted forest in the H. J. Andrews Forest, Oregon, USA
Abstract Long‐term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road‐related landslides. We examined a 50‐year record from paired‐watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450‐year‐old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi‐decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre‐harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre‐treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre‐treatment levels throughout the fourth or fifth decade, potentially impacted by post‐harvest burning, roads, and landslides. Quickflow remained high throughout the 50‐year period of study, and much higher than delayed flow in the last two decades in a watershed in which road‐related changes in flow routing and debris flows after the flood of record increased network connectivity. A long‐term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old‐growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long‐term watershed experiments.  more » « less
Award ID(s):
2025755 1943574
PAR ID:
10441273
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
5
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Montane snowpack in the Sierra Nevada provides critical water resources for ecological functions and downstream communities. Forest removal allows us to manage the snowpack in montane forests and mitigate the effect of climate on water resources. Little is known about the mid- to long-term effects that changing snowpack following forest disturbance has on tree re-growth, and how tree re-growth might in turn affect snowpack accumulation and melt. We use a 1-m resolution process-based snow model (SnowPALM) coupled with a stand-scale ecohydrological model (RHESSys) that resolves water, energy and carbon cycling to represent tree growth, and to quantify how trees and snowpack co-evolve following two disturbance scenarios (thinning and clearcutting) over a period of 40 years in a small 100 m x 234 m mid-elevation forested area in the Sierra Nevada, California. We first calculate the impact of forest disturbance on the snowpack assuming no tree regrowth and then we compare it with scenarios that include the feedback of trees regrowth on the snowpack. Without tree regrowth, snow accumulation and melt volume increase on average by roughly 5 % and 13 % following thinning and clearcutting, respectively. With tree regrowth, a regrowth rate of 0.75 and 1.15 m/decade are found for thinning and clearcutting, respectively, along with a decrease of melt volumes of 2.5 to 0.9 mm/decade, respectively. About 50 % of the snowmelt volume gains from forest thinning are lost after 40 years of regrowth, whereas only about 7 % is lost from clearcutting after the same period, which are largely explained by changes to canopy interception and sublimation. This proof-of-concept study is expected to shed light into the coevolution of montane forests and snowpack response to forest disturbance. 
    more » « less
  2. Abstract This study examined the 70‐year history of clearcutting of old‐growth forest and associated road construction, floods, landslides, large wood in rivers, and channel change in the 64 km2Lookout Creek watershed in western Oregon, where forestry practices began in 1950 and largely ceased by the 1980s. Responses differed among three zones with distinctive geomorphic processes within the watershed: a glacially sculpted zone, an earthflow‐dominated zone, and a debris slide and debris flow‐dominated zone. Watershed response to floods was more related to the timing of road construction and clearcuts, past geomorphic events, and forest dynamics than to flood magnitude. Even small (1–3 year) floods generated geomorphic responses in the period of initial road construction and logging (1950–1964) and during ongoing logging in the early part of a 30‐year period between large flood events (1966–1995). The floods of 1964/65, 15 years after the onset of logging, produced much larger geomorphic responses than the flood of record (1996), more than a decade after logging ceased. Geomorphic response was negligible for the third largest event on record (2011) during the last period (1997–2020), when former clearcuts were 20 to 70‐year‐old forest plantations. Watershed response in each of five distinct time periods depended on conditions created during prior periods in the three zones. Understanding of watershed response to forestry requires integrated observation of forestry practices, floods, landslide susceptibility, wood delivery and movement, and channel change on time scales that capture responses to past and ongoing management practices and geophysical and biological factors and events. 
    more » « less
  3. Climate change is reducing snowpack across temperate regions with negative consequences for human and natural systems. Because forest canopies create microclimates that preserve snowpack, managing forests to support snow refugia—defined here as areas that remain relatively buffered from contemporary climate change over time that sustain snow quality, quantity, and/or timing appropriate to the landscape—could reduce climate change impacts on snow cover, sustaining the benefits of snow. We review the current understanding of how forest canopies affect snow, finding that while closed‐conifer forests and snow interactions have been extensively studied in western North America, there are knowledge gaps for deciduous and mixed forests with dormant season leaf loss. We propose that there is an optimal, intermediate zone along a gradient of dormant season canopy cover (DSCC; the proportion of the ground area covered by the canopy during the dormant season), where peak snowpack depth and the potential for snow refugia will be greatest because the canopy‐mediated effects of snowpack sheltering (which can preserve snowpack) outweigh those of snowfall interception (which can limit snowpack). As an initial test of our hypothesis, we leveraged snowpack measurements in the northeastern United States spanning the DSCC gradient (low, <25% DSCC; medium, 25%–50% DSCC; and high, >50% DSCC), including from 2 sites in Old Town, Maine; 12 sites in Acadia National Park, Maine; and 30 sites in the northern White Mountains of New Hampshire. Medium DSCC forests (typically mature mixed coniferous–deciduous forests) exhibited the deepest peak snowpacks, likely due to reduced snowfall interception compared to high DSCC forests and reduced snowpack loss compared to low DSCC forests. Many snow accumulation or snowpack studies focus on the contrast between coniferous and open sites, but our results indicate a need for enhanced focus on mixed canopy sites that could serve as snow refugia. Measurements of snowpack depth and timing across a wider range of forest canopies would advance understanding of canopy–snow interactions, expand the monitoring of changing winters, and support management of forests and snow‐dependent species in the face of climate change. 
    more » « less
  4. Northeastern US temperate forests are currently net carbon (C) sinks and play an important role offsetting anthropogenic C emissions, but projected climatic changes, including increased temperatures and decreased winter snowpack, may influence this C sink over the next century. Past studies show that growing season warming increases forest C storage through greater soil nutrient availability that contributes to greater rates of net photosynthesis, while reduced winter snowpack induces soil freeze/thaw cycles that reduce tree root vitality, nutrient uptake, and forest C storage. The year-round effects of climate change on this C sink are not well understood. We report here decade-long results from the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest, which determines the combined effects of growing season warming and a smaller winter snowpack on C storage in northern temperate forests. We found after a decade of treatments that growing season warming increases cumulative tree stem biomass C by 63%. However, winter soil freeze/thaw cycles offset half of this growing season warming effect. The amount of C stored in stem biomass of trees experiencing both growing season warming plus smaller winter snowpack is only 31% higher than the reference plots, but this difference is not significant. Our results suggest that current Earth system models are likely to overestimate the C sink capacity of northern temperate forests because they do not incorporate the negative impacts of a shrinking snowpack and increased frequency of soil freeze/thaw cycles on C uptake and storage by trees. 
    more » « less
  5. Abstract Few long‐term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast‐growing species (Pinus radiata,Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long‐term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long‐term mean. Pre‐drought runoff ratios were <0.2 under 8‐year‐old Eucalyptus; >0.4 under 21‐year‐old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide‐treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations. 
    more » « less