Non-lethal injury in animals is both common and costly. The cost of regenerating autotomized limbs may leave less energy available for processes such as reproduction and growth, leading to trade-offs. Such trade-offs are context-dependent, and an individual’s energy allocation strategies may vary widely based on its condition and the environment. However, many traditional bioenergetics models have relied on fixed energy allocation rules, such as the -rule of dynamic energy budget theory, which assumes a fixed proportion (κ) of assimilated energy is always allocated to growth and maintenance. To determine whether incorporating optimality approaches into bioenergetics models improves the ability to predict energy allocation, we developed a dynamic state variable model that identifies optimal limb regeneration strategies in a model system, the Asian shore crabHemigrapsus sanguineus. Our model predictions align with known patterns for this species, including increased regeneration effort with injury severity, a shift from reproduction to growth as consumption amount increases, and an increase in regeneration effort as regeneration progresses. Lastly, Monte Carlo simulations of individuals from a previous experiment demonstrate that flexible energy allocation successfully predicts reproductive effort, suggesting that this approach may improve the accuracy of bioenergetics modeling. 
                        more » 
                        « less   
                    
                            
                            Past energy allocation overwhelms current energy stresses in determining energy allocation trade‐offs
                        
                    
    
            Abstract Regeneration of lost appendages is a gradual process in many species, spreading energetic costs of regeneration through time. Energy allocated to the regeneration of lost appendages cannot be used for other purposes and, therefore, commonly elicits energetic trade‐offs in biological processes. We used limb loss in the Asian shore crabHemigrapsus sanguineusto compare the strength of energetic trade‐offs resulting from historic limb losses that have been partially regenerated versus current injuries that have not yet been repaired. Consistent with previous studies, we show that limb loss and regeneration results in trade‐offs that reduce reproduction, energy storage, and growth. As may be expected, we show that trade‐offs in these metrics from historic limb losses far outweigh trade‐offs from current limb losses, and correlate directly with the degree of historic limb loss that has been regenerated. As regenerating limbs get closer to their normal size, these historical injuries get harder to detect, despite the continued allocation of additional resources to limb development. Our results demonstrate the importance of and a method for identifying historic appendage losses and of quantifying the amount of regeneration that has already occurred, as opposed to assessing only current injury, to accurately assess the strength of energetic trade‐offs in animals recovering from nonlethal injury. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2052246
- PAR ID:
- 10441387
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 13
- Issue:
- 8
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Injury to the newborn mouse heart is efficiently regenerated, but this capacity is lost by one week after birth. We found that IGF2, an important mitogen in heart development, is required for neonatal heart regeneration. IGF2 originates from the endocardium/endothelium and is transduced in cardiomyocytes by the insulin receptor. Following injury on postnatal day 1, absence of IGF2 abolished injury-induced cell cycle entry during the early part of the first postnatal week. Consequently, regeneration failed despite the later presence of additional cell cycle-inducing activities 7 days following injury. Most cardiomyocytes transition from mononuclear diploid to polyploid during the first postnatal week. Regeneration was rescued in Igf2-deficient neonates in three different contexts that elevate the percentage of mononuclear diploid cardiomyocytes beyond postnatal day 7. Thus, IGF2 is a paracrine-acting mitogen for heart regeneration during the early postnatal period, and IGF2-deficiency unmasks the dependence of this process on proliferation-competent mononuclear diploid cardiomyocytes.more » « less
- 
            Abstract Nonlethal injury is a pervasive stress on individual animals that can affect large portions of a population at any given time. Yet most studies examine snapshots of injury at a single place and time, making the implicit assumption that the impacts of nonlethal injury are constant. We sampled Asian shore crabs Hemigrapsus sanguineus throughout their invasive North American range and from the spring through fall of 2020. We then documented the prevalence of limb loss over this space and time. We further examined the impacts of limb loss and limb regeneration on food consumption, growth, reproduction, and energy storage. We show that injury differed substantially across sites and was most common towards the southern part of their invaded range on the East Coast of North America. Injury also varied idiosyncratically across sites and through time. It also had strong impacts on individuals via reduced growth and reproduction, despite increased food consumption in injured crabs. Given the high prevalence of nonlethal injury in this species, these negative impacts of injury on individual animals likely scale up to influence population level processes (e.g., population growth), and may be one factor acting against the widespread success of this invader.more » « less
- 
            Skeletal myofibers naturally regenerate after damage; however, impaired muscle function can result in cases when a prominent portion of skeletal muscle mass is lost, for example, following traumatic muscle injury. Volumetric muscle loss can be modeled in mice using a surgical model of muscle ablation to study the pathology of volumetric muscle loss and to test experimental treatments, such as the implantation of acellular scaffolds, which promote de novo myogenesis and angiogenesis. Here we provide step-by-step instructions to perform full-thickness surgical ablation, using biopsy punches, and to remove a large volume of the tibialis anterior muscle of the lower limb in mice. This procedure results in a reduction in muscle mass and limited regeneration capacity; the approach is easy to reproduce and can also be applied to larger animal models. For therapeutic applications, we further explain how to implant bioscaffolds into the ablated muscle site. With adequate training and practice, the surgical procedure can be performed within 30 min.more » « less
- 
            null (Ed.)For individuals with movement impairments due to neurological injuries, rehabilitative therapies such as functional electrical stimulation (FES) and rehabilitation robots hold vast potential to improve their mobility and activities of daily living. Combining FES with rehabilitation robots results in intimately coordinated human–robot interaction. An example of such interaction is FES cycling, where motorized assistance can provide high-intensity and repetitive practice of coordinated limb motion, resulting in physiological and functional benefits. In this paper, the development of multiple FES cycling testbeds and safeguards is described, along with the switched nonlinear dynamics of the cycle–rider system. Closed-loop FES cycling control designs are described for cadence and torque tracking. For each tracking objective, the authors’ past work on robust and adaptive controllers used to compute muscle stimulation and motor current inputs is presented and discussed. Experimental results involving both able-bodied individuals and participants with neurological injuries are provided for each combination of controller and tracking objective. Trade-offs for the control algorithms are discussed based on the requirements for implementation, desired rehabilitation outcomes and resulting rider performance. Lastly, future works and the applicability of the developed methods to additional technologies including teleoperated robotics are outlined.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
